留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
高级检索
网络首发栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
基于3D点云语义地图表征的智能车定位
当前状态:
摘要(683) PDF(245)
摘要:
为提高智能车节点定位准确率,研究了基于3D点云语义地图表征的智能车定位方法。该方法分为3个部分:基于三维激光点云的语义分割,包括地面分割,交通标志牌分割和杆状语义目标分割;面向智能车的点云语义地图表征,利用分割的语义目标投影,生成带权有向图,语义路,语义编码,再以语义编码和高精度GPS的全局位置组成语义地图表征模型;基于语义表征模型的智能车定位,包括基于GPS匹配的粗定位和基于语义编码渐进匹配的节点定位。实验在3种长度不同、复杂度不同的道路场景下进行,节点定位准确率分别为98.5%,97.6%和97.8%,结果表明所提出的定位方法节点定位准确率高、鲁棒性强且适用于不同的道路场景。
基于UWB定位的邮轮乘员伴随关系发现算法
当前状态:
摘要(475) PDF(186)
摘要:
为准确发现邮轮内部空间乘客之间的伴随关系,在室内环境安装UWB定位设备开展室内人员定位实验。根据UWB定位的位置数据特点,提出结合室内位置语义的Hausdorff-DBSCAN算法以聚类邮轮乘员轨迹,并利用LSTM神经网络对疑似伴随关系对象进行相似度变化趋势的预测。传统的Hausdorff算法在计算轨迹相似度时未考虑轨迹时序一致的问题,引入位置语义序列能够较好地解决这一问题。改进后的Hausdorff-DBSCAN算法的输入为乘员轨迹数据集,根据轨迹整体相似度阈值选定聚类半径,输出具有伴随关系的乘员轨迹聚类结果; LSTM神经网络以定长时间窗口的点邻近度序列为输入,预测后一时刻点邻近度值,结合轨迹相似度阈值和预测结果分析乘员伴随关系的时序变化。利用Anylogic建模单层邮轮室内环境进行乘员仿真得到的轨迹数据验证算法的有效性。改进的Hausdorff-DBSCAN算法的准确率为0.920,召回率为0.950,F1值为0.934,准确率高出对比算法至少5.7%,召回率高出对比算法至少8.0%,F1值高出对比算法至少6.7%。同时LSTM在预测邮轮乘员之间相似度变化时,收敛后的误差值能保持在3%~4%左右,预测结果具有较高的准确性。
基于描述符辅助光流跟踪匹配的数据关联方法
当前状态:
摘要(301) PDF(6)
摘要:
针对采用多状态约束卡尔曼滤波(MSCKF)的视觉惯性里程计定位精度易受特征点匹配异常值影响问题,提出了一种基于描述符辅助光流跟踪匹配的数据关联方法。该方法采用金字塔LK光流对序列图像中特征点进行跟踪匹配,计算每一对匹配点的rBRIEF描述符,根据Hamming距离对描述符的相似度进行判断消除异常匹配点。在实验中从特征点匹配主观效果以及定位精度两个方面评估本文方法的有效性。结果表明:所提出方法能够有效滤除动态场景下图像特征匹配的异常值,使用该方法处理后的图像进行MSCKF运动解算,位置结果漂移率小于0.38%,相较于未剔除异常匹配值的MSCKF算法结果,改善了54.7%,单帧图像处理时间约为39 ms。
基于室内标志的视觉定位方法
当前状态:
摘要(471) PDF(106)
摘要:
为解决室内交通场景中智能汽车和移动机器人进行定位计算的问题,利用室内场景中已存在的各类标志,引入BEBLID(Boosted Efficient Binary Local Image Descriptor)算法,提出1种视觉定位方法。对BEBLID算法进行改进,赋予其对图像整体进行特征表征的能力。将定位过程分解为离线阶段和在线阶段,离线阶段构建场景标志地图,在线阶段将当前图像所提取的全局和局部BEBLID特征与场景标志地图的对应特征进行匹配,引入KNN方法确定最近节点和最近图像,并利用场景特征地图中存储的标志坐标信息,进行度量计算,获取当前位置信息。在教学楼、办公楼和室内停车场场景进行实验,实验中对场景标志的正确识别率达到90%,平均定位误差小于1 m,与传统方法相比,同一样本下识别精度相对提升约10%,实验验证了算法的有效性。
面向智能网联汽车定位的协同地图匹配算法
当前状态:
摘要(496) PDF(38)
摘要:
为实现智能网联环境下低成本、高精度的车辆定位,研究了基于自适应遗传Rao-Blackwellized粒子滤波的协同地图匹配算法。利用联网车辆的定位信息和道路约束条件消除公共偏差,提高车辆定位精度。将自适应遗传算法引入到粒子滤波的重采样过程中,增加粒子的多样性,解决传统粒子滤波算法中容易出现的“粒子退化”和“粒子耗尽”问题。通过仿真实验与传统粒子滤波及卡尔曼平滑粒子滤波下的定位结果进行了对比,同时分析了不同联网车辆数目对定位精度的影响。通过实际测试验证了算法在实际应用中的定位效果。实测结果表明:以典型十字路口为例,在联网车辆数目为4的情况下,协同地图匹配算法的定位误差范围为1.67 m,分别为原始GNSS定位以及单车地图匹配定位结果的41.03%和56.80%。同时,该算法的统计定位精度(CEP)达到1.06 m,比GNSS原始定位精度提高了2.52 m,具有较好的定位效果。
更多>
显示方式:
综述
面向人机共驾车辆的驾驶人风险感知研究综述
冯忠祥, 李靖宇, 张卫华, 尤志栋,
2022, 40(2): 1-10.   doi: 10.3963/j.jssn.1674-4861.2022.02.001
摘要(157) HTML(88) PDF(47)
摘要:
面向人机共驾车辆的驾驶人风险感知是接管时正确应激反应和操作的前提,是交通安全领域的研究重点。分析了人机共驾车辆驾驶人风险感知概念及其特性;从驾驶人特性、自动驾驶系统、驾驶情景这3个方面分析了人机共驾车辆驾驶人风险感知的影响因素;从驾驶行为表现、接管绩效和主观评价这3个方面对人机共驾车辆驾驶人风险感知衡量方法进行归纳总结;梳理归纳了基于驾驶人培训、辅助设备调节的风险感知能力提升方法。结果表明:相比于手动驾驶,人机共驾车辆驾驶人风险感知能力较低,且是多因素耦合作用下的结果;现有风险感知能力评价方法各有弊端,缺少可广泛应用的普适性量化方法;对驾驶人状态进行动态监测和调节是保障人机共驾车辆安全应用的前提。基于现有研究中存在的问题,指出了人机共驾车辆驾驶人风险感知未来研究方向,主要包括多因素耦合情况下的风险感知研究、风险感知能力量化模型构建、风险感知能力安全阈值研究、风险感知能力动态监测与稳态保持方法研究。
道路交通安全研究的现状与热点分析
万明, 吴倩, 严利鑫, 万平,
2022, 40(2): 11-21.   doi: 10.3963/j.jssn.1674-4861.2022.02.002
摘要(192) HTML(88) PDF(60)
摘要:
道路交通事故的产生对民众的生命安全和财产损失影响巨大,国内外学者在该方面进行了大量的研究。为了整体把握道路交通事故研究热点及发展趋势,从中国知网(CNKI)核心期刊数据库和Web of Science核心合集数据库选取了2000—2020年与道路交通事故相关的3 943篇文献为数据源,借助CiteSpace和VOSviewer文献计量软件平台从文献分布特征、关键词共现、关键词聚类、关键词突现等方面进行分析,并在此基础上从事故黑点鉴别与影响因素分析、事故安全评价与事故预测、事故伤害(RTI)的流行病学研究和预防、事故处理与安全管理、事故仿真与驾驶行为分析这5个研究方向分析道路交通安全的研究趋势与热点问题。研究表明:①从作者合作方面分析发现道路交通事故研究具有多学科交叉性质;②对关键词共现分析发现国内外期刊关键词共现类别基本一致,说明国内外对道路交通事故方面的研究具有较强的一致性;③数据分析发现当前研究还存在实时交通事故评价手段欠缺、道路交通伤害数据结构不统一、事故仿真模型的通用性与有效性有待于进一步提高等问题;④从研究趋势的演进来看,未来的研究趋势主要集中在道路交通事故侵权责任研究、道路交通事故对道路通行能力的影响等方面。
交通安全
基于异步交互聚合网络的港船作业区域人员异常行为识别
陈信强, 郑金彪, 凌峻, 王梓创, 吴建军, 阎莹,
2022, 40(2): 22-29.   doi: 10.3963/j.jssn.1674-4861.2022.02.003
摘要(71) HTML(28) PDF(22)
摘要:
港船作业区域人员的异常行为识别可为智能航运的管控与决策提供重要数据支撑,有利于推动智慧港口和智能船舶的发展。基于异步交互聚合网络开展了面向港船工作环境下的人员异常行为识别研究。基于YOLO模型对港船图像进行卷积操作,利用特征金字塔优化卷积结果得到图像序列中每一帧的人员位置,结合联合学习检测和嵌入范式输出港船图像序列中的人、物体特征信息以及时序信息;利用异步交互聚合网络中的交互聚合结构更新特征池的多维度特征信息,以识别港区与船舶工作环境下的人员异常行为。实验结果表明:提出的港船作业区域人员异常行为识别方法的平均识别精度为91%,在港区工作环境下的人员异常行为识别精度为85%,在船舶驾驶台环境下,提出的异常行为识别框架对船员的不安全行为识别精度达到97%。所提出的识别框架在不同港船作业区域环境中都能获得较好的精度,验证了其有效性和可靠性。
基于车道线虚线角点检测的行车安全视距测算模型
田顺, 田山山, 杨炜, 魏朗, 陈涛,
2022, 40(2): 30-37.   doi: 10.3963/j.jssn.1674-4861.2022.02.004
摘要(62) HTML(21) PDF(20)
摘要:
开展行车视距调查对于营运期公路安全评价至关重要,这对车载条件下行车视距检测提出了要求。针对现有基于车道线图像特征点所构建的视距模型精确度不高的问题,提出了1种以车道线虚线角点为关键特征的行车安全视距测算模型。在车载设备获取的图像预处理基础上,采用轮廓跟踪法对车道线虚线轮廓进行提取,通过设定轮廓尖锐度阈值以实现对车道线虚线角点的初步筛选;使用最大、最小距离法对候选角点进行聚类分类,将每类中尖锐度最大的点判定为真实角点;此外,结合车道线虚线图像梯形特征实现对角点的精确提取;根据成像原理的坐标转换关系,通过解构角点在世界坐标和像素坐标之间的映射关系以求解二者之间的转换矩阵,得到实际道路环境的行车安全视距测算模型;将模型所测算的行车视距与运行车速所需的行车视距进行对比,实现对不同道路线形下行车视距的评价。通过实车实验对所提行车视距测算模型进行动态和静态检测精度验证。结果表明:该模型在静态条件下的行车视距检测误差小于7%,低于采用车道线特征点提取方法检测的误差;在动态车载条件可实现行车视距的连续检测,表明在该模型能适应动态条件对行车视距的检测。该模型可实时动态检测行车视距,为营运期公路安全评价提供支撑。
超高速公路圆曲线半径参数的可靠性分析
张航, 梁家明, 吕能超,
2022, 40(2): 38-44.   doi: 10.3963/j.jssn.1674-4861.2022.02.005
摘要(53) HTML(23) PDF(12)
摘要:
为探究超高速公路路线设计确保车辆行车安全的圆曲线最小半径值,引入可靠度理论,以汽车在圆曲线路段行驶时不产生横向滑移为约束条件构建动力学模型,利用该模型对圆曲线半径进行分析,并提出圆曲线半径的可靠度功能函数。对功能函数中的车辆运行速度、路面横向摩擦系数、道路超高值等相关参数进行统计,并分析其分布规律。求解设计速度分别为100,120,140,160 km/h时超高速公路圆曲线的最小半径值,取整后用蒙特卡洛法仿真估计各设计速度对应最小半径的失效概率。结合公众心理承受度,以失效概率小于0.01%为基准,对各设计速度下的圆曲线半径进行可靠性设计,得到超高速公路圆曲线最小半径推荐值在潮湿的路面条件下分别为920,1 000,1 100,1 220 m;在积雪的路面条件下分别为1 380,1 400,1 420,1 450 m。实证结果表明:在事故率较高的路段,各段圆曲线半径对应的失效概率最小值为0.019 5%,大于最小圆曲线半径的失效概率值0.01%。采用0.01%的失效概率设计超高速公路圆曲线半径,可保证其安全性高于现有标准。
基于CIDAS数据与集成学习的电动两轮车骑行者伤害致因分析
魏雯, 杜雨萌, 董傲然, 秦丹, 朱彤,
2022, 40(2): 45-52.   doi: 10.3963/j.jssn.1674-4861.2022.02.006
摘要(60) HTML(25) PDF(12)
摘要:
电动两轮车保有量持续增长导致相关的事故伤害日益严重。为研究电动两轮车-机动车碰撞事故中电动两轮车骑行者受伤程度的影响因素,以中国事故深度调查(CIDAS)数据集中的1 246起电动两轮车-机动车事故案例为基础,对比随机森林、XGBoost和LightGBM这3种集成学习模型性能,基于准确率等指标选用性能最优的LightGBM模型进行电动车骑行者受伤严重程度预测。结合SHAP可解释方法,进一步分析发现自变量与因变量之间存在明显的非线性关系:电动两轮车骑行者抛出距离对死亡的影响存在明显的阈值效应,电动两轮车骑行者被抛出距离小于5 m时,不易发生死亡事故,超过5 m时,抛出距离和死亡风险呈正相关;事故发生地为市区外或公路上以及与载重物车辆相撞能显著增加电动两轮车事故中骑行者的死亡风险;电动两轮车不加装脚蹬、座位高度大于70 cm、车把宽度为61~65 cm、车把设计形式为向后弯曲或牛角状等因素可降低死亡风险;与电动两轮车骑行者相关的降低死亡风险的因素包括女性、年龄在30~50岁及对事故发生地环境更为熟悉。
交通信息工程与控制
车车通信环境下考虑交通拥堵状态的碰撞时间混合分布建模研究
赖子良, 王江锋, 李晔, 刘兴华,
2022, 40(2): 53-62.   doi: 10.3963/j.jssn.1674-4861.2022.02.007
摘要(58) HTML(23) PDF(15)
摘要:
碰撞时间(TTC)是评价车车碰撞风险的有效指标,然而该指标分布规律受到交通状态影响。为研究车车(V2V)通信环境下不同交通状态的TTC分布规律,通过构建基于LTE-V技术的车车通信环境,开展实车实验获取4种典型城市道路中的驾驶数据。考虑加速度和航向角建立动态冲突辨识模型,计算车辆以任意角度接近时的TTC值;针对TTC值的结果出现多峰值现象,将交通流分为“拥堵、缓行、畅通”这3种状态,构建了考虑交通流状态的高斯混合模型以描述不同交通状态下的TTC分布规律,并采用最大期望(EM)算法进行参数求解。将所建高斯混合模型与负指数分布、对数正态分布、负指数/对数正态混合分布这3种传统的TTC分布模型进行对比,采用校正决定系数R2评价模型的拟合优度,并通过K-S检验验证模型的有效性。在此基础上,将所建高斯混合模型应用于非车车通信条件下不同交通状态的TTC分布拟合描述,进一步验证模型的适用性。结果表明:车车通信环境下“拥堵、缓行、畅通”这3种交通状态下的高斯分布均值逐渐增大,所处交通场景的碰撞风险依次降低;考虑交通状态的TTC高斯混合模型拟合优度为0.950 5,相较于其他TTC混合分布模型,拟合优度提升了0.057 5。
基于高德导航数据与FOA-GRNN模型的驾驶倾向性辨识方法
李浩, 王晓原, 韩俊彦, 刘士杰, 陈龙飞, 史慧丽,
2022, 40(2): 63-72.   doi: 10.3963/j.jssn.1674-4861.2022.02.008
摘要(59) HTML(53) PDF(9)
摘要:
为提升汽车主动安全功能,研究了1种基于高德导航数据的低成本、高精度驾驶倾向性辨识方法。基于高德软件开发工具构建动态驾驶数据采集应用程序,并融入个人智能终端以实现对行车数据的实时采集、处理与网络化存储。通过驾驶员生理、心理测试和实车实验获取不同驾驶倾向性驾驶员在导航行驶过程中由时间、速度和加速度推演的驾驶行为信息,采用主成分分析法(PCA)提取驾驶倾向性主要因子,并将驾驶倾向分为激进型、普通型和保守型这3类。构建基于果蝇优化算法(FOA)和广义回归神经网络(GRNN)的高精度驾驶倾向性辨识模型,利用特征变量集对模型进行训练和验证。验证结果表明:该模型总体准确率可达94.17%,对激进型、普通型和保守型的驾驶倾向性的辨识精确度分别为95.06%,92.5%,94.93%;进一步对比发现,该模型比单一的GRNN模型总体准确率提高5%~10%,与现有基于惯性传感器数据和离散小波变换结合自适应神经模糊推理系统的方法相比,该方法更具实用性且模型总体辨识准确率提升了2.17%。
更多>
[摘要](683) [PDF 4082KB](245)
摘要:
[摘要](466) [HTML全文](183) [PDF 2453KB](226)
摘要:

交通信息与安全

Journal of Transport Information and Safety

(1983年创刊 双月刊 )

曾用刊名:《交通与计算机》

主管单位:中华人民共和国教育部

主办单位:武汉理工大学

协办单位:
中国人工智能学会智能交通专业委员会

主       编:钟鸣

副  主  编:文元桥 刘克中 张存保

执行主编:徐堃

编辑出版:
《交通信息与安全》编辑部
地       址:
湖北省武汉市武昌区和平大道武汉理工大学余家头校区125信箱

邮       编:430063

电话/传真:027-86580355

E-mail:jtjsj@vip.163.com

官方网站:http://www.jtxa.net/

邮发代号:38-94

国内刊号:CN 42-1781/U

国际刊号:ISSN 1674-4861

期刊收录
  • 《中文核心期刊要目总览》入编期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊(A)
  • 中国学术期刊综合评价数据库(CAJ-CED)收录
  • 中国科技论文与引文数据库(CSTPCD)收录
  • 中国核心期刊(遴选)数据库收录
  • 中文科技期刊数据库收录
  • 中国期刊网(CNKI)收录
  • 《中国学术期刊(光盘版)收录》
  • 中国终身教育学术研究数据库总库收录
  • 日本科学技术振兴机构数据库(JST)收录
  • 《世界期刊影响力指数(WJCI)报告》(2020科技版)