Research Hotspots and Development Trends of Container Multimodal Transport in China
-
摘要: 随着全球化贸易的蓬勃发展,集装箱多式联运逐渐成为国际货物运输的主流模式。多样化市场需求的迅猛增长和新兴技术的进步与创新,为中国集装箱多式联运领域提供了广阔的发展空间。为系统总结中国集装箱多式联运领域的研究,检索中国知网(China National Knowledge Infrastructure,CNKI)核心数据库2000年1月1日—2024年7月10日共475篇中英文献,借助CiteSpace软件进行可视化分析,并结合文献阅读研究,总结得到集装箱多式联运领域的发文特征、研究现状、研究热点和研究趋势。研究结果表明:中国集装箱多式联运领域近年来突出的研究热点集中在新型集装箱、路径优化算法、绿色低碳运输和数智化信息平台建设等方面。目前集装箱多式联运领域研究存在的主要问题有:自动化设备与信息平台尚未实现全链条覆盖,全流程智能化进程缓慢;路径优化算法的实证研究不足,应对复杂场景能力受限;绿色能源应用与碳税制度构建尚不完善,综合性政策研究不足;信息平台建设面临数据互通壁垒与信息共享安全风险,协同效率提升有限。未来发展方向呈现多维度技术融合和系统性创新特征,主要集中在多式联运智能系统的动态响应与自主决策、全过程多情景下新型算法的开发与迁移、基于区块链技术的智能合约与自动结算、绿色岸电技术与新能源动力系统的耦合应用等方向。Abstract: Amid accelerating globalization of international trade, container multimodal transport has emerged as the dominant mode of international cargo movement. Rising market diversification and technological innovations now drive transformative opportunities for container multimodal transport in China. To systematically summarize existing research, 475 Chinese and English articles (from 1st January 2000 to 10th July 2024) are retrieved from the China National Knowledge Infrastructure (CNKI) core database. Using CiteSpace visualization and literature synthesis, publication patterns, research status, key themes, and development trends are evaluated in China's container multimodal transport research. Key findings reveal four research domains: novel container designs, path optimization algorithms, green logistics systems, and digital platforms development. Critical challenges persist, including fragmented automation coverage, limited smart technology adoption, and inadequate algorithm validation in complex operational scenarios. Additional constraints involve underdeveloped green energy integration, incomplete carbon taxation frameworks, and cybersecurity risks in data-sharing platforms. Emerging trends highlight multidimensional innovation focusing on: AI-driven dynamic response systems for autonomous decision-making, adaptive algorithms for multi-scenario process optimization, blockchain-enabled smart contract solutions, and synergistic green energy-grid integration strategies, etc.
-
Key words:
- multimodal transport /
- containers /
- research trend /
- knowledge graph /
- visual analysis /
- bibliometric analysis
-
表 1 部分检索迭代过程
Table 1. Partial retrieval iteration process
序号 检索式 CNKI论文数量 1 主题(多式联运+ 多式联运物流+ 多式联运体系+ 多式联运系统)AND主题(集装箱+ 集装箱运输)
主题(multimodal transport + intermodal transport)AND主题(container transportation + container),同义词扩展509 2 主题(多式联运+ 多式联运物流+ 多式联运体系+ 多式联运系统)AND主题(集装箱+ 集装箱运输)AND主题(发展)
主题(multimodal transport + intermodal transport)AND主题(container transportation + container)AND主题(development + develop),同义词扩展179 3 主题(多式联运+ 多式联运物流+ 多式联运体系+ 多式联运系统)AND主题(集装箱+ 集装箱运输)AND主题(发展策略+ 发展对策)
主题(multimodal transport + intermodal transport)AND主题(container transportation + container)AND主题(development strategy),同义词扩展22 $ \vdots$ $ \vdots$ $ \vdots$ 10 主题(多式联运+ 多式联运物流+ 多式联运体系+ 多式联运系统)AND主题(集装箱+ 集装箱运输)AND
主题(发展策略+ 发展对策+ 发展趋势+ 发展历程+ 发展)OR主题(多式联运*路径优化)OR主题(多式联运*路径选择)OR主题(海铁联运+ 空铁联运+ 公铁联运)
主题(multimodal transport + intermodal transport)AND主题(container transportation + container)OR主题(multimodal transport * path planning)OR主题(multimodal transport * path choice),同义词扩展729 11 主题(多式联运+ 多式联运物流+ 多式联运体系+ 多式联运系统)AND主题(集装箱+ 集装箱运输)AND
主题(发展策略+ 发展对策+ 发展趋势+ 发展历程+ 发展)OR主题(多式联运*路径优化)OR主题(多式联运*路径选择)OR主题(海铁联运+ 空铁联运+ 公铁联运)
主题(multimodal transport + intermodal transport)AND主题(container transportation + container)OR主题(multimodal transport * path planning)OR主题(multimodal transport * path choice),同义词扩展475 时间范围:2000年1月1日—2024年7月10日;人工手动筛选审核 表 2 关键词共现表
Table 2. Keyword co-occurrence
序号 关键词 频次 中心度 序号 关键词 频次 中心度 1 多式联运 171 0.87 21 路径规划 4 0.00 2 海铁联运 54 0.26 22 物流 3 0.04 3 路径优化 40 0.15 23 Logit模型 3 0.03 4 集装箱 38 0.26 24 一带一路 3 0.02 5 空铁联运 29 0.14 25 发展策略 3 0.02 6 公铁联运 25 0.11 26 低碳 3 0.01 7 综合运输 21 0.12 27 空集装箱 3 0.01 8 遗传算法 14 0.07 28 一单制 3 0.00 9 碳排放 12 0.05 29 危险货物 3 0.00 10 铁路 12 0.21 30 时间窗 3 0.00 11 鲁棒优化 8 0.01 31 模糊需求 3 0.00 12 不确定需求 7 0.04 32 多层网络 2 0.01 13 优化模型 7 0.01 33 低碳运输 2 0.01 14 多目标规划 6 0.01 34 双目标优化 2 0.01 15 中欧班列 5 0.06 35 启发式算法 2 0.01 16 危险品运输 5 0.00 36 交通枢纽 2 0.00 17 蚁群算法 4 0.02 37 可行性 2 0.00 18 动态规划 4 0.01 38 SWOT分析 2 0.00 19 冷藏集装箱 4 0.01 39 博弈 2 0.00 20 路径选择 4 0.00 40 时间价值 2 0.00 表 3 新型集装箱的研究总结
Table 3. Summary of research on innovative containers
表 4 路径优化的研究总结
Table 4. Summary of research on path optimization
表 5 绿色低碳运输的研究总结
Table 5. Summary of research on green and low-carbon transportation
研究方向 研究主题 研究内容 文献来源 调整能源结构 新能源船舶 液化天然气(liquefied natural gas,LNG)船舶、液化石油气(liquefied petroleum gas,LPG)船舶、甲醇燃料动力船舶、电力与燃料电池船舶、氢能与氨能燃料船舶 [38] 低碳化港口 太阳能、风能、地热能、生物能等可再生能源的应用
岸电技术、堆场运输设备电气化、燃料供应链建设[39]
[40]绿色运营管理 能效优化 气层减阻技术 [41] 能耗数据采集、能耗实施预测 [42] 路径优化 多目标路径优化算法 [24-37] 多式联运信息平台建设 [16, 45-48] 政策环境研究 补贴政策 补贴方案研究 [43] 碳税征收 国际碳税税制研究、中国碳税制度构建 [44] 表 6 数智化信息平台建设的研究总结
Table 6. Summary of research on the construction of digital and intelligent information platform
表 7 未来研究方向总结
Table 7. Summary of future research trends
研究主题 政策支撑 未来研究方向 智能集装箱多式联运系统的发展 《推进多式联运发展优化调整运输结构工作方案(2021—2025年)》《关于加快推进多式联运“一单制”“一箱制”发展的意见》 自动驾驶与智能运输系统的集成应用 集装箱多式联运智能决策支持系统 全过程多情景下的新型算法应用 《关于加快推进多式联运“一单制”“一箱制”发展的意见》 机器学习的深度应用 优化算法在集装箱装载过程的应用 绿色物流与经济视角下的多式联运 《推进多式联运发展优化调整运输结构工作方案(2021—2025年)》 绿色能源在多式联运中的应用 集装箱的循环经济与可持续发展 区块链技术下的新型运营管理模式 《关于加快推进多式联运“一单制”“一箱制”发展的意见》 区块链技术在供应链信息共享和合作中的应用 智能合约与自动化结算机制 -
[1] 1] 王进坤, 孙刚, 张宁. 城市层面多式联运系统的规划探索—以张家港为例[J]. 综合运输, 2021, 43(12): 127-132, 144.WANG J K, SUN G, ZHANG N. Planning exploration of mul-timodal transport system at city level: taking Zhangjiagang as an example[J]. China Transportation Review, 2021, 43(12): 127-132, 144. (in Chinese) [2] 张玉召, 李海军, 张文豪, 等. 多式联运联接共性关键技术体系构建研究[J]. 中国工程科学, 2023, 25(6): 212-224.ZHANG Y Z, LI H J, ZHANG W H, et al. Construction of common key technology system of multimodal transport connection[J]. Strategic Study of CAE, 2023, 25(6): 212-224. (in Chinese) [3] 李俊, 肖笛, 温想, 等. 基于DQN算法的支线集装箱船航线规划与配载协同优化方法[J]. 交通信息与安全, 2023, 41 (6): 132-141. doi: 10.3963/j.jssn.1674-4861.2023.06.015LI J, XIAO D, WEN X, et al. Coordinated optimization method for feeder container ship route planning and stowage based on DQN algorithm[J]. Journal of Transport Information and Safety, 2023, 41 (6): 132-141. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.015 [4] 孙哲, 马胜男, 解相朋, 等. 基于仿生算法的多式联运路径规划方法综述[J]. 控制与决策, 2025, 40(2): 375-386.SUN Z, MA S N, XIE X P, et al. A review of multimodal transportation path planning methods based on bionic algorithm[J]. Control and Decision Making, 2025, 40(2): 375-386. (in Chinese) [5] 范爱龙, 严新平, 李忠奎, 等. 我国航运业绿色低碳发展的需求、路径与展望[J]. 船海工程, 2024, 53(4): 1-5, 12.FAN A L, YAN X P, LI Z K, et al. Demand, path and prospect of green and low carbon development of China's shipping industry[J]. Ship & Ocean Engineering, 2024, 53(4): 1-5, 12. (in Chinese) [6] 于剑. 铁路发展集装箱多式联运问题及对策分析[J]. 铁道运输与经济, 2021, 43(11): 70-75, 88.YU J. Problems and countermeasures in the development of railway container multimodal transport[J]. Railway Transport and Economy, 2021, 43(11): 70-75, 88. (in Chinese) [7] 王喜富, 马骏驰, 杨凯. 国内外陆港研究进展与我国研究前景展望——基于CiteSpace知识图谱分析[J]. 北京交通大学学报(社会科学版), 2024, 23(2): 80-88.WANG X F, MA J C, YANG K. Research progress of domestic and international dry ports and Prospects of China's research: analysis based on citespace knowledge mapping[J]. Journal of Beijing Jiaotong University(Social Science Edition), 2024, 23(2): 80-88. (in Chinese) [8] 张青松, 魏祥宇, 吴煜. 智能化民航安保的研究热点与发展趋势[J]. 交通信息与安全, 2023, 41(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2023.05.001ZHANG Q S, WEI X Y, WU Y. Research hot spots and development trends of intelligent civil aviation security[J]. Journal of Transport Information and Safety, 2023, 41(5): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.001 [9] 李玉民, 李腾, 王知临, 等. 基于外部转运式的货运空铁联运衔接方案设计[J]. 科学技术与工程, 2024, 24(18): 7843-7850.LI Y M, LI T, WANG Z L, et al. Connecting scheme design of freight air-rail intermodal transport based on external transfer type[J]. Science Technology and Engineering, 2024, 24(18): 7843-7850. (in Chinese) [10] 王超, 怀旭, 伍佳妮. 公铁联运下中国中西部地区低碳运输实证研究[J]. 交通运输系统工程与信息, 2023, 23(4): 24-33.WANG C, HUAI X, WU J N. Empirical study on low-carbon and rail-road intermodal transport in middle west China[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 24-33. (in Chinese) [11] 杨文东, 彭纪元, 姜雨. 面向空铁联运旅客选择行为的两阶段容量控制方法[J]. 交通信息与安全, 2023, 41(6): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.06.014YANG W D, PENG J Y, JIANG Y. A two-stage capacity control method for air-rail intermodal passenger choice behavior[J]. Journal of Transport Information and Safety, 2023, 41(6): 124-131. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.014 [12] 郭青松. 进一步提高冷藏集装箱港航服务品质推动冷链物流高质量发展[J]. 中国水运, 2023(1): 8-9.GUO Q S. Further improve the quality of port and shipping services for refrigerated containers and promote the high-quality development of cold chain logistics[J]. China Water Transport, 2023(1): 8-9. (in Chinese) [13] 倪敏敏, 夏剑. 多岸线下多式联运自动化集装箱码头总平面布置与装卸工艺设计[J]. 水运工程, 2023, (7)95-100.NI M M, XIA J. General layout and loading/unloading process design of multimodal automated container terminal under multiple shorelines[J]. Water Transportation Engineering, 2023, (7): 95-100. (in Chinese) [14] 麦宇雄, 刘洋, 梁浩. 自动化集装箱码头平面与工艺总体布局现状与发展趋势[J]. 水运工程, 2022(10): 1-7.MAI Y X, LIU Y, LIANG H. Current status and development trend of plane and process overall layout for automated container terminals[J]. Port & Waterway Engineering, 2022(10): 1-7. (in Chinese) [15] 卢春房, 贾光智, 张永波, 等. 我国综合交通运输体系效率提升策略研究[J]. 中国工程科学, 2025, 27(1): 193-201.LU C F, JIA G Z, ZHANG Y B, et al. Research on the efficiency improvement strategy of China's comprehensive transportation system[J]. China Engineering Science, 2025, 27(1): 193-201. (in Chinese) [16] 尹钦仪, 盛国伟, 张戎. 中国海铁联运信息平台构建模式[J]. 铁道运输与经济, 2024, 46(6): 65-72.YIN Q Y, SHENG G W, ZHANG R. Construction pattern of China's rail-sea multimodal transport information platform[J]. Railway Transport and Economy, 2024, 46(6): 65-72. (in Chinese) [17] 宁涛, 杨秋平, 夏春禹. 这款新型集装箱, 改写内贸"散改集"历史[J]. 中国远洋海运, 2023(9): 46-49, 9-10.NING T, YANG Q P, XIA C Y. This new type of container rewrites the history of domestic trade "bulk transport changed to box transport"[J]. Maritime China, 2023, (9): 46-49, 9-10. (in Chinese) [18] 李海洲, 刘平, 李小灵, 等. 超大型集装箱船中横隔板拓扑优化方法研究[J]. 舰船科学技术, 2023, 45(16): 27-31.LI H Z, LIU P, LI X L, et al. Typical topology optimization design of the transversal support structures of very large container ship[J]. Ship Science and Technology, 2023, 45(16): 27-31. (in Chinese) [19] 袁雪丽, 杨菊花. 模糊条件下考虑低排放和可折叠箱的空箱调运优化研究[J]. 铁道运输与经济, 2024, 46(2): 79-89.YUAN X L, YANG J H. Optimization of empty container transportation considering low emission and foldable containers under fuzzy conditions[J]. Railway Transport and Economy, 2024, 46(2): 79-89. (in Chinese) [20] 马嘉启, 孟庆兵, 张文静. 基于Baydur复合材料下的新型集装箱的研发[J]. 科技与创新, 2021(6): 134-135.MA J Q, MENG Q B, ZHANG W J. Research and development of new containers based on Baydur composite materials[J]. Science and Technology & Innovation, 2021, (6): 134-135. (in Chinese) [21] 罗彦平, 苗晓雨, 侯天华, 等. 真空绝热板在冷链运输装备上的工程应用研究[J]. 铁道机车车辆, 2024, 44(1): 95-99.LUO Y P, MIAO X Y, HOU T H, et al. Vacuum heat insulation board application research on cold chain transportation equipment[J]. Railway Locomotive & Car, 2024, 44(1): 95-99. (in Chinese) [22] 苗晓雨, 姜成, 张俊, 等. 铁路新能源冷藏集装箱技术条件研究[J]. 中国铁路, 2021(12): 71-75.MIAO X Y, JIANG C, ZHANG J, et al. Research on technical conditions for railway new energy refrigerated containers[J]. China Railway, 2021, (12): 71-75. (in Chinese) [23] 张铁金. 海铁联运一体化集装箱场站集卡调度研究[J]. 铁道运输与经济, 2024, 46(2): 54-61.ZHANG T J. Research on the truck scheduling of container yard for integrated sea-rail intermodal transport[J]. Railway Transport and Economy, 202446(2): 54-61. (in Chinese) [24] 吴雅搏, 徐晓敏. 低碳视角下多式联运优化模型研究[J]. 物流工程与管理, 2024, 46(1): 132-136.WU Y B, XU X M. Research on multimodal transport optimization model from the perspective of low carbon[J]. Logistics Engineering and Management, 2024, 46(1): 132-136. (in Chinese) [25] GE D. Optimal path selection of multimodal transport based on ant colony algorithm[J]. Journal of Physics: Conference Series, 2021, 2083(3): 032011. [26] ZHENG C, SUN K, GU Y, et al. Multimodal transport path selection of cold chain logistics based on improved particle swarm optimization algorithm[J]. Journal of Advanced Transportation, 2022(7): 1.1-1.12. [27] ZHU W, WANG H, ZHANG X. Synergy evaluation model of container multimodal transport based on BP neural network[J]. Neural Computing and Applications, 2021, 33(9): 4087-4095. [28] 万杰, 龙云飞, 陈星瀚. 基于改进烟花算法的中俄商品多式联运路径优化[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(3): 291-298.WAN J, LONG Y F, CHEN X H. Optimization of multimodal transport route of Chinese and Russian commodities based on improved fireworks algorithm[J]. Journal of Tianjin University(Science and Technology), 2022, 55(3): 291-298. (in Chinese) [29] 吕宗磊, 吴志帅, 徐涛, 等. 面向空铁联运的枢纽航线网络优化模型[J]. 计算机工程与设计, 2021, 42(4): 1188-1194.LYU Z L, WU Z S, Xu T, et al. Hub-spoke airline network optimization model for air-high speed rail intermodal transportation[J]. Computer Engineering and Design, 2021, 42(4): 1188-1194. (in Chinese) [30] YU B. Optimization of multimodal transportation path selection under low-carbon and time-schedule situation[J]. BCP Business & Management, 2023, 48: 205-212. [31] 王娟, 程玉丽, 杨雨菡, 等. 考虑碳排放的长大货物多式联运路径优化[J]. 交通运输系统工程与信息, 2024, 24(4): 1-11, 49.WANG J, CHENG Y L, YANG Y H, et al. Optimization of intermodal routes for grown-up cargoes considering carbon emission[J]. Transportation Systems Engineering and Information, 2024, 24(4): 1-11, 49. (in Chinese) [32] 刘倚玮, 赵章荣. 考虑碳排放的多式联运路径优化算法比较与分析[J]. 工业工程与管理, 2022, 27(5): 53-59.LIU Y W, ZHAO Z R. Comparison and analysis of optimization algorithms for multimodal transportation routes considering carbon emissions[J]. Industrial Engineering and Management, 2022, 27(5): 53-59. (in Chinese) [33] 陈维亚, 龚浩, 方晓平. 考虑运输碳税与质量承诺的多式联运路径优化[J]. 铁道科学与工程学报, 2022, 19(1): 34-41.CHEN W Y, GONG H, FANG X P. Multimodal transportation route optimization considering transportation carbon tax and quality commitment[J]. Journal of Railway Science and Engineering, 2022, 19(1): 34-41. (in Chinese) [34] 刘松, 舒文, 彭勇, 等. 双重不确定下应急物资多式联运可靠路径优化[J]. 交通运输系统工程与信息, 2023, 23(1): 58-66.LIU S, SHU W, PENG Y, et al. Optimization of reliable routes for multimodal transport of emergency supplies under dual uncertainty[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 58-66. (in Chinese) [35] LI M, SUN X. Path optimization of low-carbon container multimodal transport under uncertain conditions[J]. Sustain-ability, 2022, 14(21): 14098. [36] 黄琴, 张惠珍, 马良, 等. 混合哈里斯鹰优化算法求解带模糊需求的低碳多式联运路径规划问题[J]. 计算机应用研究, 2023, 40(10): 2978-2983, 2999.HUANG Q, ZHANG H Z, MA L, et al. Hybrid Harris hawks optimization algorithm for solving low-carbon multimodal transportation problem with fuzzy demand[J]. Application Research of Computers, 2023, 40(10): 2978-2983, 2999. (in Chinese) [37] 户佐安, 蔡佳, 罗洹. 混合不确定条件下多式联运路径优化[J]. 北京交通大学学报, 2023, 47(6): 32-40.HU Z A, CAI J, LUO H. Optimization of multimodal transportation routes under mixed uncertainties[J]. Journal of Beijing Jiaotong University, 2023, 47(6): 32-40. (in Chinese) [38] 刘刚, 黄朝俊, 刘建成, 等. 绿色零碳氨燃料船舶应用研究[J]. 船海工程, 2024, 53(6): 51-56.LIU G, HUANG C J, LIU J C, et al. Research on the application of green zero-carbon ammonia-fueled ships[J]. Ship & Ocean Engineering, 2024, 53(6): 51-56. (in Chinese) [39] 彭云, 李相达, 王文渊, 等. 绿色集装箱港口节能减排策略综述[J]. 交通运输工程学报, 2022, 22(4): 28-46.PENG Y, LI X D, WANG W Y, et al. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 28-46. (in Chinese) [40] 陈弓, 朱宇, 韩冰. 绿色航运能源技术现状及发展趋势分析[J]. 交通信息与安全, 2023, 41(2): 168-178. doi: 10.3963/j.jssn.1674-4861.2023.02.018CHEN G, ZHU Y, HAN B. Analysis of current status and development trend of green shipping energy technology[J]. Journal of Transport Information and Safety, 2023, 41(2): 168-178(. in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.018 [41] 赵大刚, 高适, 张顺, 等. 船舶气层减阻技术研究综述[J]. 船舶工程, 2024, 46(4): 18-28.ZHAO D G, GAO S, ZHANG S, et al. Review of air layer drag reduction technology on ships[J]. Ship Engineering, 2024, 46(4): 18-28. (in Chinese) [42] 胡智辉, 金永兴, 周田瑞, 等. 基于XGBoost的船舶能耗实时预测[J]. 上海海事大学学报, 2022, 43(1): 23-29, 37.HU Z H, JIN Y X, ZHOU T R, et al. Real-time prediction of ship energy consumption based on XGBoost[J]. Journal of Shanghai Maritime University, 2022, 43(1): 23-29, 37. (in Chinese) [43] 张得志, 万卓群, 李双艳, 等. 低碳视角下多式联运网络设计优化问题研究[J]. 铁道科学与工程学报, 2024, 21(5): 1793-1804.ZHANG D Z, WAN Z Q, LI S Y, et al. Optimization of multimodal transport network design from a low-carbon perspective[J]. Journal of Railway Science and Engineering, 2024, 21(5): 1793-1804. (in Chinese) [44] 李书林, 董战峰, 龙凤. 国际碳税政策实践发展与经验借鉴[J]. 中国环境管理, 2023, 15(4): 35-43.LI S L, DONG Z F, LONG F. The updated international practice progress of carbon tax policy and references for China[J]. Chinese Journal of Environmental Management, 2023, 15(4): 35-43. (in Chinese) [45] 陈志伟, 王鸿鹏. 多式联运一单制大数据平台的构建[J]. 集美大学学报(自然科学版), 2022, 27(3): 239-244.CHEN Z W, WANG H P. Construction of single document big data platform for multimodal transport based on block-chain technology[J]. Journal of Jimei University(Natural Science), 2022, 27(3): 239-244. (in Chinese) [46] 朱姗, 沈延虎, 张学炜. 长江航运物流公共信息平台建设发展思路[J]. 中国水运, 2022(4): 44-47.ZHU S, SHEN Y H, ZHANG X W. Yangtze river shipping logistics public information platform construction and development ideas[J]. China Water Transport, 2022, (4): 44-47. (in Chinese) [47] 李靖丰. 交通大数据驱动下的智能物流调度与路径选择[J]. 中国航务周刊, 2023(42): 69-71.LI J F. Intelligent logistics scheduling and route selection driven by transportation big data[J]. China Shipping Gazette, 2023(42): 69-71. (in Chinese) [48] 王瑞民, 黄敏珍, 李国华. 基于区块链技术的铁路货运物流平台构建[J]. 中国铁路, 2021(5): 103-107.WANG R M, HUANG M Z, LI G H. Building of railway freight logistics platform based on blockchain technology[J]. China Railway, 2021(5): 103-107. (in Chinese) [49] YANG J, WANG P, JU Y. Variable speed limit intelligent decision-making control strategy based on deep reinforcement learning under emergencies[J]. Sustainability, 2024, 16(3): 965. -