留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机参数Logit模型的校车事故伤害严重程度分析

施颖 潘义勇 吴静婷

施颖, 潘义勇, 吴静婷. 基于随机参数Logit模型的校车事故伤害严重程度分析[J]. 交通信息与安全, 2021, 39(5): 43-49. doi: 10.3963/j.jssn.1674-4861.2021.05.006
引用本文: 施颖, 潘义勇, 吴静婷. 基于随机参数Logit模型的校车事故伤害严重程度分析[J]. 交通信息与安全, 2021, 39(5): 43-49. doi: 10.3963/j.jssn.1674-4861.2021.05.006
SHI Ying, PAN Yiyong, WU Jingting. An Analysis of Injury Severities in School Bus Accidents Based on Random Parameter Logit Models[J]. Journal of Transport Information and Safety, 2021, 39(5): 43-49. doi: 10.3963/j.jssn.1674-4861.2021.05.006
Citation: SHI Ying, PAN Yiyong, WU Jingting. An Analysis of Injury Severities in School Bus Accidents Based on Random Parameter Logit Models[J]. Journal of Transport Information and Safety, 2021, 39(5): 43-49. doi: 10.3963/j.jssn.1674-4861.2021.05.006

基于随机参数Logit模型的校车事故伤害严重程度分析

doi: 10.3963/j.jssn.1674-4861.2021.05.006
基金项目: 

国家自然科学基金项目 51508280

详细信息
    作者简介:

    施颖(1996—),硕士研究生.研究方向:交通运输规划与管理.E-mail:shiying20201124@163.com

    通讯作者:

    潘义勇(1980—),博士,副教授.研究方向:交通运输规划与管理.E-mail:uoupanyg@njfu.edu.cn

  • 中图分类号: U491.31

An Analysis of Injury Severities in School Bus Accidents Based on Random Parameter Logit Models

  • 摘要:

    为深入分析安全因素对校车事故伤害严重程度的影响,探寻事故数据中未观察到的异质性,基于随机参数Logit模型从驾驶员、车辆、道路特征及环境4个方面构建校车事故伤害严重程度模型。结果表明:①涉事车辆数为2辆且对应参数服从正态分布时,不发生死亡受伤事故的概率为83.84%;②驾驶员年龄35~44岁、涉事车辆数为1辆时,死亡受伤事故概率均降低0.58%;③道路限速值为40~50 km/h时发生死亡受伤事故概率增加0.35%,道路限速值大于60 km/h时发生死亡受伤事故概率增加0.96%;④安全气囊状态打开,死亡受伤事故概率增加2.35%;⑤交通控制方式为车道标线时可能伤害事故概率增加1.85%,控制方式为中央分隔带时未受伤事故概率降低1.44%,死亡受伤事故发生概率却增加0.48%;⑥不安全时倒车转弯时发生可能伤害事故概率降低0.42%,分心驾驶、未按规定车道行驶、跟车太近和其他(饮酒)时未受伤事故概率分别增加1.36%,0.56%,0.39%和0.97%,可能受伤事故和死亡受伤事故发生概率却有所降低。

     

  • 图  1  随机参数分布

    Figure  1.  Distribution of random parameters

    表  1  影响因素定义及统计描述

    Table  1.   Definition and statistical description of influencing factors

    序号 影响因素 变量符号 描述 频数(比例/%)
    1 驾驶员性别 X1 1 209(50.04)
    1 207(49.96)
    2 驾驶员年龄/岁 < 25 221(9.15)
    X2 25~34 463(19.16)
    X3 35~44 427(17.67)
    X4 45~54 456(18.87)
    X5 55~64 514(21.27)
    X6 > 64 335(13.87)
    3 安全带使用 X7 2 258(93.46)
    158(6.54)
    4 安全气囊状态 X8 打开 191(7.91)
    未打开 2 225(92.09)
    5 不安全驾驶行为 没有不当行为 390(16.14)
    X9 分心驾驶 416(17.22)
    X10 不按规定车道行驶 162(6.71)
    X11 不安全时倒车、转弯 190(7.86)
    X12 不安全车速 485(20.07)
    X13 未能让出道路优先权 192(7.95)
    X14 错误转弯 113(4.68)
    X15 跟车距离太近 78(3.22)
    X16 其他(饮酒等) 390(16.14)
    6 涉事车辆数/辆 X17 1 439(18.17)
    X18 2 1 915(79.26)
    3 62(2.57)
    7 道路限速值/(km/h) 5~30 409(16.93)
    X19 30~40 1 019(42.18)
    X20 40~50 564(23.34)
    X21 50~60 192(7.95)
    X22 > 60 232(9.60)
    8 是否在交叉口 X23 775(32.08)
    1 641(67.92)
    9 光线条件 白天 2 105(87.13)
    X24 黄昏/黎明 1 12(4.64)
    X25 夜有灯 85(3.52)
    X26 夜无灯 114(4.72)
    10 控制方式 706(29.22)
    X27 信号控制 421(17.43)
    X28 停车让行/指示牌 447(18.50)
    X29 车道标线 168(23.39)
    X30 中央分隔带 168(6.95)
    X31 其他 109(4.51)
    11 是否在城区 1 698(70.28)
    X32 718(29.72)
    12 是否在学校区域 71(2.94)
    X33 2 345(97.06)
    注:“—”表示参考类别,不纳入模型进行拟合。
    下载: 导出CSV

    表  2  共线性诊断结果

    Table  2.   Results of co-linearity diagnostics

    序号 变量 VIF 序号 变量 VIF 序号 变量 VIF
    1 X17 7.67 12 X9 1.80 23 X32 1.29
    2 X18 7.19 13 X27 1.78 24 X14 1.29
    3 X5 2.83 14 X16 1.75 25 X26 1.24
    4 X4 2.63 15 X29 1.75 26 X15 1.21
    5 X2 2.58 16 X28 1.65 27 X31 1.16
    6 X3 2.51 17 X21 1.60 28 X25 1.14
    7 X6 2.36 18 X11 1.48 29 X8 1.11
    8 X20 2.26 19 X13 1.46 30 X1 1.11
    9 X19 2.16 20 X23 1.39 31 X33 1.05
    10 X12 1.96 21 X10 1.36 32 X7 1.05
    11 X22 1.87 22 X30 1.35 33 X24 1.04
    下载: 导出CSV

    表  3  校车事故伤害严重程度的随机参数Logit模型标定

    Table  3.   Calibration of the mixed Logit model for the severity of school bus accident injuries

    变量 参数估计 t-Ratio 平均弹性系数(%)
    C B A
    A:死亡、严重伤害和非失能性伤害 驾驶员年龄:35~44岁 -0.897 -2.78 0.47 0.11 -0.58
    道路限速: > 60 km/h 1.028 3.49 -0.77 -0.18 0.96
    涉事车辆数:1辆 -1.594 -4.58 0.52 0.06 -0.58
    涉事车辆数:2辆(均值) -1.859 -2.32 0.25 0.15 -0.39
    涉事车辆数:2辆(标准差) 1.882 2.63
    B:可能伤害 安全气囊状态:打开 2.335 4.49 -1.92 -0.43 2.35
    控制方式:车道标线 0.568 4.01 -1.70 1.85 -0.15
    C:未受伤 不安全驾驶行为:不安全时倒车转弯 -1.509 -3.81 0.39 -0.42 0.02
    截距项 1.859 17.73
    道路限速值:40~50 km/h -0.342 -2.66 -1.32 0.97 0.35
    控制方式:中央分隔带 -1.016 -5.19 -1.44 0.96 0.48
    不安全驾驶行为:分心驾驶 0.865 4.69 1.36 -0.95 -0.41
    不安全驾驶行为:未按规定车道行驶 0.745 2.91 0.56 -0.41 -0.15
    不安全驾驶行为:跟车太近 1.463 3.57 0.39 -0.28 -0.12
    下载: 导出CSV
  • [1] NIRUPPAMA N, HAFEZI H. A short communication on school bus accidents: A review and analysis[J]. Natural Hazards, 2014, 74 (3): 2305-2310. doi: 10.1007/s11069-014-1255-8
    [2] 陈昭明, 徐文远, 曲悠扬, 等. 基于混合Logit模型的高速公路交通事故严重程度分析[J]. 交通信息与安全, 2019, 37 (3): 42-50. doi: 10.3963/j.issn.1674-4861.2019.03.006

    CHEN Zhaoming, XU Wenyuan, QU Youyang, et al. Analysis of highway traffic accident severity based on mixed Logit model[J]. Journal of Transport Information and Safety, 2019, 37 (3): 42-50. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.03.006
    [3] 何雅琴, 段雨阳, 王晨. 基于累积Logistic模型的行人交通事故严重程度分析及对策研究[J]. 安全与环境学报, 2021, 21 (3): 1165-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103036.htm

    HE Yaqin, DUAN Yuyang, WANG Chen. Analysis and countermeasures of pedestrian traffic accident severity based on cumulative Logistic model[J]. Journal of Safety and Environment, 2021, 21 (3): 1165-1172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103036.htm
    [4] 宋栋栋, 杨小宝, 祖兴水, 等. 基于均值异质性随机参数Logit模型的城市道路事故驾驶员受伤严重程度研究[J]. 交通运输系统工程与信息, 2021, 21 (3): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103027.htm

    SONG Dongdong, YANG Xiaobao, ZU Xingshui, et al. Study on the severity of driver injury in urban road accidents based on mean heterogeneity random parameter Logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (3): 214-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103027.htm
    [5] 王燕, 方景敏, 王霞. 安全视角下的校车运营与管理体系研究: 以济南市为例[J]. 重庆交通大学学报(社会科学版), 2014, 14 (1): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJS201401005.htm

    WANG Yan, FANG Jingmin, WANG Xia. Study on school bus operation and management system from the perspective of safety-taking Jinan city as an example[J]. Journal of Chongqing Jiaotong University(Social Science Edition), 2014, 14(1): 15-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJS201401005.htm
    [6] 陈涛, 王栋, 魏朗. 中美校车安全标准比较研究[J]. 中国安全科学学报, 2012, 22 (5): 147-153. doi: 10.3969/j.issn.1003-3033.2012.05.023

    CHEN Tao, WANG Dong, WEI Lang. Comparative study on school bus safety standards in China and America[J]. China Safety Science Journal, 2012, 22 (5): 147-153. (in Chinese) doi: 10.3969/j.issn.1003-3033.2012.05.023
    [7] HU Xiaofeng, WU Jiansong, BAI Yiping, et al. Quantitative analysis of school safety events in China[J]. Journal of Safety Science and Resilience, 2020, 1 (2): 73-79. doi: 10.1016/j.jnlssr.2020.07.002
    [8] WU Jiansong, FANG Weipeng, TONG Xing, et al. Bayesian analysis of school bus accidents: A case study of China[J]. Natural Hazards, 2019, 95 (3): 463-483. doi: 10.1007/s11069-018-3491-9
    [9] LI Yanwu, SU Guofeng, ZHANG Xiaole, et al. Analysis of school bus accidents in China[J]. Natural Hazards, 2015, 79 (2): 723-734. doi: 10.1007/s11069-015-1867-7
    [10] 潘立军, 刘喜梅. 校车安全事故故障树分析及安全运营对策研究[J]. 湖南社会科学, 2019 (4): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-FLSH201904018.htm

    PAN Lijun, LIU Ximei. School bus safety accident fault tree analysis and safety operation countermeasures research[J]. Hunan Social Science, 2019 (4): 127-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FLSH201904018.htm
    [11] 林庆丰, 邓院昌. 基于Logistic的城市公交事故严重程度影响因素分析: 以广东省为例[J]. 中山大学学报(自然科学版), 2020, 59 (4): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ202004014.htm

    LIN Qingfeng, DENG Yuanchang. Logistic analysis of influencing factors of urban bus accident severity: A case study of Guangdong province[J]. Journal of Sun Yat-sen University (Natural Science), 2020, 59 (4): 120-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ202004014.htm
    [12] 胡骥, 闫章存, 卢小钊, 等. 基于有序Logit与Probit模型的交通事故严重性影响因素分析[J]. 安全与环境学报, 2018, 18 (3): 836-843. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201803004.htm

    HU Ji, YAN Zhangcun, LU Xiaozhao, et al. Analysis of factors influencing traffic accident severity based on ordered Logit and Probit model[J]. Journal of Safety and Environment, 2018, 18 (3): 836-843. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201803004.htm
    [13] CELIK A K, OKTAY E. A multinominal logit analysis of risk factors influencing road traffic injury severities in the Erzurum and Kars provinces of Turkey[J]. Accident Analysis & Prevention, 2014 (72): 66-77.
    [14] LIU Pengfei, FAN W D. Modeling head-on crash severity with drivers under the influence of alcohol or drugs(DUI) and non-DUI[J]. Traffic Injury Prevention, 2020, 21 (1): 7-12. doi: 10.1080/15389588.2019.1696964
    [15] LIN Zijing, FAN W D. Cyclist injury severity analysis with mixed-logit models at intersections and nonintersection locations[J]. Journal of Transportation Safety and Security, 2021, 13(2): 223-245. doi: 10.1080/19439962.2019.1628140
    [16] 汤左淦. 考虑异质性效应的翻车事故伤害严重程度模型对比研究[D]. 广州: 华南理工大学, 2019.

    TANG Zuogan. Comparative study on injury severity model of rollover accident considering heterogeneity effect[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [17] 马壮林, 邵春福, 李霞. 基于Logistic模型的公路隧道交通事故严重程度的影响因素[J]. 吉林大学学报(工学版), 2010, 40 (2): 423-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201002024.htm

    MA Zhuanglin, SHAO Chun, LI Xia. Research on the influence factors of traffic accident severity in highway tunnel based on Logistic model[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40 (2): 423-426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201002024.htm
    [18] 史楠楠, 诸立超. 不同Halton抽样方法在随机参数Logit模型的比较[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40 (5): 913-918. doi: 10.3963/j.issn.2095-3844.2016.05.030

    SHI Nannan, ZHU Lichao. Comparison of different Halton sampling methods in random parameter Logit model[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering), 2016, 40 (5): 913-918. (in Chinese) doi: 10.3963/j.issn.2095-3844.2016.05.030
    [19] CERWICK D M, GKRITA K, SHAHEED M S, et al. A comparison of the mixed logit and latent class methods for crash severity analysis[J]. Analytic Methods in Accident Research, 2014, 3 (4): 11-27.
    [20] 张渤. 机动车与摩托车翻车事故受伤严重程度分析[D]. 成都: 西南交通大学, 2018.

    ZHANG Bo. Injury severity analysis of vehicle and motorcycle rolover accident[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [21] 侯芹忠. 考虑异质性与内生性的高速公路交通事故随机参数模型[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HOU Qinzhong. Random parameters model for freeway traffic crash considering heterogeneity and endogeneity[D]. Harbin: Harbin Institute of Technology, 2019.
    [22] WALLIS L A. Injuries associated with airbag deployment[J]. Emergency Medicine Journal, 2002, 19 (6): 490-493. doi: 10.1136/emj.19.6.490
    [23] 葛如海, 陈珣, 张学荣, 等. 校车儿童安全气囊安全性仿真分析[J]. 中国安全科学学报, 2015, 25 (3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201503002.htm

    GE Ruhai, CHEN Xun, ZHANG Xuerong, et al. Safety simulation analysis of school bus children airbag[J]. China Safety Science Journal, 2015, 25 (3): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201503002.htm
    [24] 蒋卫东. 道路中央分离带的安全性分析[J]. 公路交通技术, 2004, 4 (2): 78-80. doi: 10.3969/j.issn.1009-6477.2004.02.023

    JIANG Weidong. Safety analysis of road central separation belt[J]. Highway Traffic Technology, 2004, 4 (2): 78-80. (in Chinese) doi: 10.3969/j.issn.1009-6477.2004.02.023
    [25] 周志将, 袁黎, 崔二娟, 等. 城市道路中央分隔带设计对交通安全影响分析[J]. 公路工程, 2012, 37 (4): 69-72+108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201204015.htm

    ZHOU Zhijiang, YUAN Li, CUI Erjuan, et al. Analysis on the impact of urban road central divider design on traffic safety[J]. Highway Engineering, 2012, 37 (4): 69-72+108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201204015.htm
    [26] WU Qiong, ZHANG Guohui, CHEN Cong, et al. Heterogeneous impacts of gender-interpreted contributing factors on driver injury severities in single-vehicle rollover crashes[J]. Accident Analysis & Prevention, 2016, 94 (9): 28-34.
    [27] ANARKOOLI A J, HOSSEINPOUR M, KARDAR A. Investigation of factors affecting the injury severity of single-vehicle rollover crashes: A random-effects generalized ordered probit model[J]. Accident Analysis & Prevention, 2017, 106 (9): 399-410.
    [28] YU Bing, ZHANG Weigong, CAI Yingfeng. A lane departure warning system based on machine vision[C]. 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China: IEEE, 2008.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  2092
  • HTML全文浏览量:  220
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13

目录

    /

    返回文章
    返回