留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“自动+人工”混合驾驶环境下交通管理研究综述

裴玉龙 迟佰强 吕景亮 岳志坤

裴玉龙, 迟佰强, 吕景亮, 岳志坤. “自动+人工”混合驾驶环境下交通管理研究综述[J]. 交通信息与安全, 2021, 39(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2021.05.001
引用本文: 裴玉龙, 迟佰强, 吕景亮, 岳志坤. “自动+人工”混合驾驶环境下交通管理研究综述[J]. 交通信息与安全, 2021, 39(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2021.05.001
PEI Yulong, CHI Baiqiang, LYU Jingliang, YUE Zhikun. An Overview of Traffic Management in "Automatic+Manual" Driving Environment[J]. Journal of Transport Information and Safety, 2021, 39(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2021.05.001
Citation: PEI Yulong, CHI Baiqiang, LYU Jingliang, YUE Zhikun. An Overview of Traffic Management in "Automatic+Manual" Driving Environment[J]. Journal of Transport Information and Safety, 2021, 39(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2021.05.001

“自动+人工”混合驾驶环境下交通管理研究综述

doi: 10.3963/j.jssn.1674-4861.2021.05.001
基金项目: 

国家自然科学基金项目 71771047

国家自然科学基金项目 51638004

详细信息
    通讯作者:

    裴玉龙(1961—),博士,教授.研究方向:道路交通安全,交通规划,交通管理. E-mail:peiyulong@nefu.edu.cn

  • 中图分类号: U491.3

An Overview of Traffic Management in "Automatic+Manual" Driving Environment

  • 摘要:

    为了解混合驾驶环境下交通管理的研究现状和发展趋势,以“自动驾驶汽车”发展现状为基础,分析自动驾驶汽车在混合驾驶环境下存在的问题,基于Citespace文献计量工具,CNKI核心数据库近24年(1997—2020年)有关自动驾驶研究的文献为研究数据源,从发文年代、期刊来源、研究机构、关键词等进行文献计量和可视化分析,并生成各研究机构间的关系网络图谱及关键词共现网络图谱。结果表明:国内近5年自动驾驶发文量呈上升趋势;《中国公路学报》为发文量最高的期刊;自动驾驶汽车研究的方向主要包括:①目标检测及场景感知研究;②决策与控制;③交通事故责任划定研究。在未来混合驾驶环境下交通管理应结合车路协同、高精度地图技术,从标志标线设计、信号配时优化、路权归属、交通事故责任划定等方面进行研究,使道路运输更安全、高效、便捷。

     

  • 图  1  “自动+人工”混合驾驶程度

    Figure  1.  Degree of "automatic+manual" driving

    图  2  文献筛选过程

    Figure  2.  Literature screening process

    图  3  1997—2020年发文量

    Figure  3.  Number of papers published in1997—2020

    图  4  研究机构关系图谱

    Figure  4.  Relationship of research institutions

    图  5  自动驾驶研究突现词

    Figure  5.  Emergent words in automatic driving research

    图  6  关键词共现网络图谱

    Figure  6.  Co-occurrence network of keywords

    图  7  结合车路协同的目标检测

    Figure  7.  Target detection combined with vehicle-road cooperation

    图  8  高精度地图+车路协同系统的路径规划技术

    Figure  8.  Path planning technologies of high-precision map + collaborative vehicle-road system

    图  9  混合驾驶环境下交通管理问题分析

    Figure  9.  Analysis of traffic management problems in the mixed driving environment

    表  1  各期刊来源分布

    Table  1.   Source distribution of Journals

    期刊来源 发文数量/篇 占比/%
    SCI期刊 4 0.76
    EI期刊 145 27.67
    CSCD/CSSCI期刊 281 53.63
    北大核心期刊 94 17.94
    合计 524 100.00
    下载: 导出CSV

    表  2  自动驾驶文献EI期刊发文统计

    Table  2.   Statistics of papers published in EI journals of automatic driving literature

    期刊 发文量/篇 占比/% 复合影响因子
    《中国公路学报》 27 5.15 2.438
    《汽车工程》 13 2.48 1.752
    《交通运输系统工程与信息》 9 1.72 1.827
    《吉林大学学报(工学版)》 8 1.53 1.386
    《自动化学报》 6 1.15 4.466
    注:“占比” 为占全部文献的比例。
    下载: 导出CSV

    表  3  自动驾驶文献CSCD/CSSCI期刊发文统计

    Table  3.   Statistics of papers published in CSCD/CSSCI Journals

    期刊 发文量/篇 占比/% 复合影响因子
    《汽车技术》 20 3.82 1.406
    《汽车安全与节能学报》 16 3.05 2.018
    《交通信息与安全》 8 1.53 1.265
    《测绘通报》 7 1.34 1.806
    《计算机工程与应用》 7 1.34 1.748
    《重庆交通大学学报(自然科学版)》 7 1.34 1.048
    《系统仿真学报》 7 1.34 0.990
    《计算机应用》 6 1.15 2.063
    《法学》 5 0.95 6.283
    《科技管理研究》 5 0.95 1.952
    下载: 导出CSV

    表  4  关键词共现(频次大于4)

    Table  4.   Co-occurrence of keywords (frequency > 4)

    序号 频次 中心度 关键词 序号 频次 中心度 关键词
    1 511 0.46 自动驾驶汽车 16 8 0.06 自动驾驶系统
    2 83 0.30 人工智能 17 7 0.13 轨迹规划
    3 72 0.04 目标检测 18 7 0.09 注意义务
    4 59 0.11 深度学习 19 7 0.06 轨迹跟踪
    5 55 0.11 卷积神经网络 20 6 0.08 智能车辆
    6 54 0.20 产品责任 21 6 0.01 强化学习
    7 47 0.25 模型预测控制 22 5 0.08 交通肇事
    8 46 0.25 自适应 23 4 0.10 遗传算法
    9 45 0.23 计算机视觉 24 4 0.07 驾驶行为
    10 16 0.13 交通工程 25 4 0.06 责任分配
    11 15 0.07 智能交通系统 26 4 0.04 路径跟踪
    12 12 0.09 刑事责任 27 4 0.03 车路协同
    13 10 0.23 车辆工程 28 4 0.02 场景理解
    14 10 0.04 路径规划 29 4 0.01 车辆检测
    15 9 0.11 模糊控制 30 4 0.00 汽车产业
    下载: 导出CSV
  • [1] MONTANARO U, DIXIT S, FALLAH S, et al. Towards connect-ed autonomous driving: review of use-cases[J]. Vehicle System Dynamics, 2019, 57 (6): 779-814. doi: 10.1080/00423114.2018.1492142
    [2] KALRA N, PADDOCK S M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? [J]. Transportation Research Part A: Policy and Practice, 2016 (94) : 182-193.
    [3] 张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58 (4): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201804017.htm

    ZHANG Xinyu, GAO Hong, ZHAO Janhui, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 438-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201804017.htm
    [4] 朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J]. 中国公路学报, 2019, 32 (6): 1-19.

    ZHU Bing, ZHANG Peixing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19. (in Chinese)
    [5] 徐筱秦, 冯忠祥, 李靖宇. 驾驶员接管自动驾驶车辆研究进展[J]. 交通信息与安全, 2019, 37 (5): 1-8. doi: 10.3963/j.issn.1674-4861.2019.05.001

    XU Xiaoqin, FENG Zhongxiang, LI Jingyu. A review of progresses on drivers'takeover behaviors of automatic vehicles[J]. Journal of Transport Information and Safety, 2019, 37(5): 1-8. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.05.001
    [6] CAO Jingwei, SONG Chuanxue, XIAO Feng, et al. Lane detection algorithm for intelligent vehicles in complex road conditions anddynamicenvironment[R/OL](. 2019-12)[2021-04-01]. https://www.webofscience.com/wos/alldb/full-record/WOS:000479160300133.
    [7] 王海, 王宽, 蔡英凤, 等. 基于改进级联卷积神经网络的交通标志识别[J]. 汽车工程, 2020, 42 (9): 1256-1262+1269. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202009016.htm

    WANG Hai, WANG Kuan, CAI Yingfeng, et al. Traffic sign recognition based on improved cascade convolution neural network[J]. Automotive Engineering, 2020, 42(9): 1256-1262 + 1269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202009016.htm
    [8] YASSMINA S, ALI B. An overview of traffic sign detection and classification methods[J]. International Journal of Multimedia Information Retrieval, 2017, 6 (3): 193-210. doi: 10.1007/s13735-017-0129-8
    [9] 王瑞军, 李斌, 应世杰, 等. 智能公路磁道钉编码差错控制技术研究[J]. 公路交通科技, 2008 (10): 134-139. doi: 10.3969/j.issn.1002-0268.2008.10.027

    WANG Ruijun, LI Bin, YING Shijie, et al. Research on magnetic markers coding mistake control technology for intelligent highway system[J]. Journal of Highway and Transportation Research and Development, 2008 (10): 134-139. (in Chinese) doi: 10.3969/j.issn.1002-0268.2008.10.027
    [10] 钱基德, 陈斌, 钱基业, 等. 基于感兴趣区域模型的车道线快速检测算法[J]. 电子科技大学学报, 2018, 47(3): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201803006.htm

    QIAN Jide, CHEN Bin, QIAN Jiye, et al. Fast lane detection algorithm based on region of interest model[J]. Journal of University of Electronic Science and Technology of China, 2020, 47 (3): 356-361. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201803006.htm
    [11] 钟泽滨. 一种用于车道线识别的图像灰度化方法[J]. 同济大学学报(自然科学版), 2019, 47 (增刊1): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1033.htm

    ZHONG Zebin. An image graying method for lane detection[J]. Journal of Tongji University(Natural Science), 2019, 47 (S1): 178-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1033.htm
    [12] MAMMERI A, BOUKERCHE A, TANG Z Z. A real-time lane marking localization, tracking and communication system[J]. Computer Communications, 2015 (73) : 132-143.
    [13] OBRADOVIC D, KONJOVIC Z, PAP E, et al. Linear fuzzy space based road lane model and detection[J]. Knowledge-Based Systems, 2013, 38 (4): 37-47.
    [14] PARK H. Lane detection algorithm based on Hough transform for high-speed self driving vehicles[J]. International Journal of Web and Grid Services, 2019, 15 (3) : 240-250. doi: 10.1504/IJWGS.2019.10022421
    [15] PALAFOX P R, BETZ J, NOBIS F, et al. Semantic depth: fusing semantic segmentation and monocular depth estimation for enabling autonomous driving in roads without lane lines[R/OL].(2019-12)[2021-04-01]. https://www.webofscience.com/wos/alldb/full-record/WOS:000479160300191
    [16] LI Xi, MA Huimin, WANG Xiang, et al. Traffic light recognition for complex scene with fusion detections[J]. IEEE Transactions On Intelligent Transportation Systems, 2018, 19(1): 199-208. doi: 10.1109/TITS.2017.2749971
    [17] HAN Bing, WANG Yunhao, YANG Zheng, et al. Small-scale pedestrian detection based on deep neural network[J]. IEEE Transactions On Intelligent Transportation Systems, 2020, 21 (7): 3046-3055. doi: 10.1109/TITS.2019.2923752
    [18] WANG Xue. Moving vehicle detection and tracking based on video sequences[J]. Traitement Du Signal, 2020, 37(2): 325-331. doi: 10.18280/ts.370219
    [19] 张丞, 何坚, 王伟东. 空间上下文与时序特征融合的交警指挥手势识别技术[J]. 电子学报, 2020, 48 (5): 966-974. doi: 10.3969/j.issn.0372-2112.2020.05.018

    ZHANG Cheng, HE Jian, WANG Weidong. Visual recognition of chinese traffic police gestures based on spatial context and temporal features[J]. Acta Electronica Sinica, 2020, 48(5): 966-974. (in Chinese) doi: 10.3969/j.issn.0372-2112.2020.05.018
    [20] GUO Fan, TANG Jin, WANG Xile. Gesture recognition of traffic police based on static and dynamic descriptor fusion[J]. Pattern Analysis and Applications, 2017, 76 (6): 8915-8936.
    [21] HE Jian, ZHANG Cheng, HE Xinlin, et al. Visual recognition of traffic police gestures with convolutional pose machine and handcrafted features[J]. Neurocomputing, 2020 (390) : 248-259.
    [22] SUKUVAARA T, NURMI P. Wireless traffic service platform for combined vehicle-to-vehicle and vehicle-to-infrastructure communications[J]. IEEE Wireless Communications, 2009, 16 (6): 54-61. doi: 10.1109/MWC.2009.5361179
    [23] LIU Changhao, ZHANG Yixiao, ZHANG Tingting, et al. High throughput vehicle coordination strategies at road intersections[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14341-14354. doi: 10.1109/TVT.2020.3029933
    [24] 任永利, 董航瑞. 车路协同+自动驾驶助力郑州智慧岛交通强国示范[J]. 科技导报, 2020, 38 (9): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202009013.htm

    REN Yongli, DONG Hangrui. To build a powerful transportation demonstration of China: Zhengzhou smart island with the help of vehicle-road coordination and self-driving[J]. Science & Technology Review, 2020, 38 (9): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202009013.htm
    [25] 张家旭, 张振兆, 赵健, 等. 采用极点配置的自动驾驶汽车换道路径规划与跟踪控制[J]. 西安交通大学学报, 2020, 54 (10): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202010020.htm

    ZHANG Jiaxu, ZHANG Zhenzhao, ZHAO Jian, et al. A path planning and tracking control method for lane changing of autonomous vehicle using pole assignment[J]. Journal of Xi'an Jiaotong University, 2020, 54 (10): 160-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202010020.htm
    [26] WANG Lukun, ZHAO Xiaoying, SU Hao, et al. Lane changing trajectory planning and tracking control for intelligent vehicle on curved road[J]. Journal of Xi'an Jiaotong University, 2016, 5 (1): 1-18.
    [27] LI Xingyu, TANG Bo, Ball J, et al. Rollover-free path planning for off-road autonomous driving[J]. Electronics, 2019, 8 (6): 614. doi: 10.3390/electronics8060614
    [28] 王鑫鹏, 陈志军, 吴超仲, 等. 考虑驾驶风格的智能车自主驾驶决策方法[J]. 交通信息与安全, 2020, 38 (2): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002008.htm

    WANG Xinpeng, CHEN Zhijun, WU Chaozhong, et al. A method of automatic driving decision for smart car considering driving style[J]. Journal of Transport Information and Safety, 2020, 38 (2): 37-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002008.htm
    [29] WANG Yulei, SHAO Qian, ZHOU Jian, et al. Longitudinal and lateral control of autonomous vehicles in multi-vehicle driving environments[J]. IET Intelligent Transport Systems, 2020, 14 (8): 924-935. doi: 10.1049/iet-its.2019.0846
    [30] 周维, 过学迅, 裴晓飞, 等. 基于RRT与MPC的智能车辆路径规划与跟踪控制研究[J]. 汽车工程, 2020, 42(9): 1151-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202009002.htm

    ZHOU We, GUO Xuexun, PEI Xiaofei, et al. Study on path planning and tracking control for intelligent vehicle based on RRT and MPC[J]. Automotive Engineering, 2020, 42(9): 1151-1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202009002.htm
    [31] TAHIR Z, QURESHI AH, AYAZ Y, et al. Using artificial potential field theory for a cooperative control model in a connected and automated vehicles environment[J]. Transportation Research record, 2020, 2674 (9): 1005-1018. doi: 10.1177/0361198120933271
    [32] PRIMATESTA S, GUGLIERI G, RIZZO A. A risk-aware path planning strategy for uavs in urban environments[J]. Journal of Intelligent & Robotic systems, 2019, 95 (2): 629-643.
    [33] BAHAR MRB, GHIASI A R, BAHAR H B. Grid roadmap based ANN corridor search for collision free, path planning[J]. Scientia Iranica, 2012, 19 (6): 1850-1855. doi: 10.1016/j.scient.2012.02.028
    [34] LI Junjun, XU Bowei, YANG Yongsheng, et al. Quantum ant colony optimization algorithm for AGVs path planning based on Bloch coordinates of pheromones[J]. Natural Computing, 2020, 19 (4): 673-682. doi: 10.1007/s11047-018-9711-0
    [35] ZHAO Dongming, YU Huimin, FANG Xiang, et al. A path planning method based on multi objective cauchy mutation cat swarm optimization algorithm for navigation system of intelligent patrol car[J]. IEEE Access, 2020 (8) : 151788-151803.
    [36] JIANG Kun, YANG Diange, LIU Chaoran, et al. A flexible multi-layer map model designed for lane-level routeplanning in autonomous vehicles[J]. IEEE Transactions on knowledge and Data Engineering, 2019 (2): 305-318.
    [37] 胡钊政, 孙莹妹, 李祎承. 路面路标高精度地图构建与多尺度车辆定位[J]. 哈尔滨工业大学学报, 2019, 51 (9): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201909023.htm

    HU Zhaozheng, SUN Yingmei, LI Weicheng. High definition map construction from pavement landmarks for multiscale vehicle localization[J]. Journal of Harbin Institute of Technology, 2019, 51 (9): 149-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201909023.htm
    [38] 陈志军, 许开立. 生产安全事故侵权责任的归责原则研究[J]. 中国安全科学学报, 2016, 26 (9): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201609003.htm

    CHEN Zhijun, XU Kaili. Study on liability principles for work safety accident tort liability[J]. China Safety Science Journal, 2016, 26 (9): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201609003.htm
    [39] CUER R, PIETRAC L, NIEL E. A formal framework for the safe design of the autonomous driving supervision[J]. Reliability Engineering & System Safety, 2018, (174) : 29-40.
    [40] 牛彬彬. 我国高度自动驾驶汽车侵权责任体系之建构[J]. 西北民族大学学报(哲学社会科学版), 2019 (3): 177-188. doi: 10.3969/j.issn.1001-5140.2019.03.023

    NIU Binbin. Construction of highly autonomous vehicles' tort liability system in China[J]. Journal of Northwest Minzu University(Philosophy and Social Sciences), 2019(3): 177-188. (in Chinese) doi: 10.3969/j.issn.1001-5140.2019.03.023
    [41] 张龙. 自动驾驶型道路交通事故责任主体认定研究[J]. 苏州大学学报(哲学社会科学版), 2018, 39 (5): 79-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDX201805010.htm

    ZHANG Long. Research on the identification of the responsible subject of automatic driving road traffic accidents[J]. Journal of Soochow University(Philosophy & Social Science Edition), 2018, 39 (5): 79-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDX201805010.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  5127
  • HTML全文浏览量:  1637
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23

目录

    /

    返回文章
    返回