| Citation: | YING Shen, ZENG Zhuoyuan, ZHANG Jiyuan. A Detection Method of Traffic Scene License Plate for Data Desensitization[J]. Journal of Transport Information and Safety, 2024, 42(6): 84-94. doi: 10.3963/j.jssn.1674-4861.2024.06.009 |
| [1] |
邱彬, 李广友. 智能网联汽车数据安全管理研究[J]. 汽车工程学报, 2022, 12 (3): 307-313. doi: 10.3969/j.issn.2095-1469.2022.03.11
QIU B, LI G Y. Research on data security management of intelligent connected vehicle[J]. Chinese Journal of Automotive Engineering, 2022, 12 (3): 307-313. (in Chinese) doi: 10.3969/j.issn.2095-1469.2022.03.11
|
| [2] |
唐迪, 顾健, 张凯悦, 等. 数据脱敏技术发展趋势[J]. 保密科学技术, 2021, 127 (4): 4-11.
TANG D, GU J, ZHANG K Y, et al. Development trend of data desensitization technology[J]. Science and Technology of Secrecy, 2021, 127 (4): 4-11. (in Chinese)
|
| [3] |
REN S Q, HE K M, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
| [4] |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multiBox detector[C]. The European Conference on Computer Vision, Amsterdam, Netherlands: Springer, 2016.
|
| [5] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
| [6] |
艾曼. 基于Faster-RCNN的车牌检测[J]. 计算机与数字工程, 2020, 48 (1): 174-177. doi: 10.3969/j.issn.1672-9722.2020.01.033
AI M. License plate detection based on faster-rcnn[J]. Computer and Digital Engineering, 2020, 48 (1): 174-177. (in Chinese) doi: 10.3969/j.issn.1672-9722.2020.01.033
|
| [7] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
| [8] |
马巧梅, 王明俊, 梁昊然. 复杂场景下基于改进YOLOv3的车牌定位检测算法[J]. 计算机工程与应用, 2021, 57(7): 198-208.
MA Q M, WANG M J, LIANG H R. License plate location detection algorithm based on improved Yolov3 in complex scenes[J]. Computer Engineering and Applications, 2021, 57 (7): 198-208. (in Chinese)
|
| [9] |
XU Z B, YANG W, MENG A J, et al. Towards end-to-end license plate detection and recognition: a large dataset and baseline[C]. The 2018 European Conference on Computer Vision, Heidelberg, Germany: Springer, 2018.
|
| [10] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08)[2023-06-25].
|
| [11] |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
| [12] |
孙世昕, 马蕾, 李千目, 等. 基于深度学习的实时车牌检测与识别[J]. 现代交通与冶金材料, 2022, 2 (4): 61-67.
SUN S X, MA L, LI Q M, et al. Real-time license plate detection and recognition based on deep learning[J]. Modern Transportation and Metallurgical Materials. 2022, 2(4): 61-67. (in Chinese)
|
| [13] |
陈婷, 姚大春, 高涛, 等. 基于PReNet和YOLOv4融合的雨天交通目标检测网络[J]. 交通运输工程学报, 2022, 22 (3): 225-237.
CHEN T, YAO D C, GAO T, et al. A fused network based on PReNet and YOLOv4 for traffic object detection in rainy environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (3): 225-237. (in Chinese)
|
| [14] |
FAN X D, ZHAO W. Improving robustness of license plates automatic recognition in natural scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18845-18854. doi: 10.1109/TITS.2022.3151475
|
| [15] |
张逸凡, 聂琳真, 黄灏然, 等. 基于改进YOLOv5算法的道路交通参与者实时检测方法[J]. 交通信息与安全, 2024, 42 (1): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.01.013
ZHANG Y F, NIE L Z, HUANG H R, et al. A method of real-time detection for road traffic participants based on an improved yolov5 algorithm[J]. Journal of Transport Information and Safety, 2024, 42 (1): 115-123. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.013
|
| [16] |
OUYANG D, HE S, ZHAN J, et al. Efficient multi-scale attention module with cross-spatial learning[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece: IEEE, 2023.
|
| [17] |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher flops for faster neural networks[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
|
| [18] |
WANG C Y, LIAO H Y M, WU Y H, et al. Cspnet: a new backbone that can enhance learning capability of cnn[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA: IEEE, 2020.
|
| [19] |
LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA: IEEE, 2017.
|
| [20] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
|
| [21] |
TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE, 2020.
|
| [22] |
邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58 (13): 63-73.
QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved yolov5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73. (in Chinese)
|
| [23] |
GONG Y X, DENG L J, TAO S, et al. Unified Chinese license plate detection and recognition with high efficiency[J]. Journal of Visual Communication and Image Representation, 2022, 86: 103541. http://arxiv.org/abs/2205.03582?context=cs.CV
|
| [24] |
WOO S H, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany: Springer, 2018.
|
| [25] |
CAO Y, XU J R, LIN S, et al. Gcnet: non-local networks meet squeeze-excitation networks and beyond[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, South Korea: IEEE, 2019.
|
| [26] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
|
| [27] |
LI H, WANG P, SHEN C H. Toward end-to-end car license plate detection and recognition with deep neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (3): 1126-1136.
|