Citation: | CHEN Qianqian, HU Fengling, WEN Yuanqiao. A Recognition Method for Ship Motion Pattern Based on Nine-axis IMU[J]. Journal of Transport Information and Safety, 2024, 42(6): 74-83. doi: 10.3963/j.jssn.1674-4861.2024.06.008 |
[1] |
CHEN Z, XUE J, WU C, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161: 69-76. doi: 10.1016/j.oceaneng.2018.04.072
|
[2] |
曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39 (1): 212-222.
ZENG Y, LIU C L, TANG T N. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computers, 2016, 39 (1): 212-222. (in Chinese)
|
[3] |
马文耀, 吴兆麟, 李伟峰, 等. AIS数据中单船操纵模式辨识[J]. 中国航海, 2017, 40 (4): 51-55, 80.
MA W Y, WU Z L, LI W F, et al. Recognition of individual ship maneuvering pattern from AIS data[J]. Navifation of China, 40 (4): 51-55, 88. (in Chinese)
|
[4] |
PATROUMPAS K, ALEVIZOS E, ARTIKIS A, et al. Online event recognition from moving vessel trajectories[J]. Geoinformatica, 2017, 21 (2): 1-39. doi: 10.1007/s10707-016-0266-x
|
[5] |
陈影玉, 杨神化, 索永峰. 船舶行为异常检测研究进展[J]. 交通信息与安全, 2020, 38(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001
CHEN Y Y, YANG S H, SUO Y F. Research progress of ship behavior anomaly detection[J]. Journal of Transport Information and Safety, 2020, 38 (5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001
|
[6] |
陈影玉, 杨神化, 索永峰. 船舶行为异常检测研究进展[J]. 交通信息与安全, 2020, 38 (5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001
CHEN Y Y, YANG S H, SUO Y F. Research progress of ship behavior anomaly detection. [J]. Journal of Transport Information and Safety, 2020, 38 (5): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.05.001
|
[7] |
马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17 (5): 149-158.
MA W Y, WU Z L LI W F. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (5): 149-158. (in Chinese)
|
[8] |
文元桥, 宋荣鑫, 黄亮, 等. 船舶行为的语义建模与表达[J]. 哈尔滨工业大学学报, 2021, 53 (8): 109-115.
WEN Y Q, SONG R X, HUANG L, et al. Semantic modeling and expression for ship behaviors. [J]. Journal of Haebin Institute of Technology, 2021, 53 (8): 109-115. (in Chinese)
|
[9] |
黄亮, 刘益, 文元桥, 等. 内河渡船异常行为识别[J]. 大连海事大学学报, 2017, 43 (1): 8-13.
HUANG L, LIU Y, WEN Y Q, et al. Abnormal behavior recognition of inland river ferryboat[J]. Journal of Dalian Maritime University, 2017, 43 (1): 8-13. (in Chinese)
|
[10] |
YANG D, WU L, WANG S, et al. How big data enriches maritime research-a critical review of automatic identification system (AIS) data applications[J]. Transport Reviews, 2019, 39 (6): 755-773. doi: 10.1080/01441647.2019.1649315
|
[11] |
汪荣琪. 内河航道船舶检测与跟踪算法研究[D]. 武汉: 武汉理工大学, 2017
WANG R Q, Research on detection and tracking algorithm for ship in inland waterway[D]. WuHan: Wuhan University of Technology, 2017. (in Chinese)
|
[12] |
刘俊. 基于红外图像的内河运动船舶目标检测和跟踪技术研究[D]. 重庆: 重庆大学, 2008.
LIU J. Moving ships detection and tracking from infrared image in inland waterway[D] ChongQing: Chongqing University, 2008. (in Chinese)
|
[13] |
CAI Z, YU L, FAN Q, et al. Development of a vision-based ship behavior characteristics extraction approach and comparison with K-means clustering[C]. ISOPE International Ocean and Polar Engineering Conference, Shanghai: ISOPE, 2022.
|
[14] |
GAO L, BOURKE A, NELSON J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems[J]. Medical Engineering & Physics, 2014, 36 (6): 779-785. http://www.xueshufan.com/publication/2013582641
|
[15] |
孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46 (7): 1267-1274.
MENG G L, ZHANG H M, PIAO H Y, et al. Recognition of fighter maneuver in automatic flight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (7): 1267-1274. (in Chinese)
|
[16] |
徐西蒙, 杨任农, 于洋, 等. 基于运动分解和H-SVM的空战目标机动识别[J]. 控制与决策, 2020, 35 (5): 1265-1272.
XU X M, YANG R N, YU Y, et al. Targetmaneuver recognitioninair combat based on motion decompositionand H-SVM[J]. Control and Decision, 2020, 35 (5): 1265-1272. (in Chinese)
|
[17] |
HE Z, JIN L. Activity recognition from acceleration data using AR model representation and SVM[C]. 2008 International Conference on Machine Learning and Cybernetics, Kunming: IEEE, 2008.
|
[18] |
GUERBAI Y, CHIBANI Y, HADJADJI B. The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters[J]. Pattern Recognition, 2015, 48 (1): 103-113. http://www.onacademic.com/detail/journal_1000036617188210_317c.html
|
[19] |
白金辉. 面向能量回收的MIMU人体运动检测识别方法研究及系统实现[D]. 南京: 东南大学, 2015.
BAI J H. Research and implementation of human motion detection and recognition system with MIMU for energy harvesting[D]. NanJing: Southeast University, 2015. (in Chinese)
|
[20] |
MORILLO L M S, GONZALEZ-ABRIL L, RAMIREZ J A O, et al. Low energy physical activity recognition system on smartphones[J]. Sensors, 2015, 15 (3): 5163-5196. http://www.xueshufan.com/publication/2072737142
|
[21] |
FAN X, ZHAO S, SUN J. Nonparametric test for stratum effects in the cox model with interval-censored data[J]. Communicationsin Statistics-Theory and Methods, 2019, 48 (2): 300-310. http://www.xueshufan.com/publication/2774284810
|
[22] |
CHEN J Y, XIONG H, ZHENG H. Parameters optimization for SVM based on particle swarm algorithm[J]. Computer Science, 2018, 45 (6): 197-203. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJA201806035.htm
|