Turn off MathJax
Article Contents
YAN Sixun, WU Bing, SHANG Lei, LYU Jieyin, WANG Yang. Companion Relationship Discovering Algorithm for Passengers in the Cruise Based on UWB Positioning[J]. Journal of Transport Information and Safety.
Citation: YAN Sixun, WU Bing, SHANG Lei, LYU Jieyin, WANG Yang. Companion Relationship Discovering Algorithm for Passengers in the Cruise Based on UWB Positioning[J]. Journal of Transport Information and Safety.

Companion Relationship Discovering Algorithm for Passengers in the Cruise Based on UWB Positioning

  • Received Date: 2021-07-31
    Available Online: 2021-12-14
  • To accurately discover the companion relationship among passengers in the interior space of a cruise, UWB positioning is employed in the cruise to carry out on-board personnel location experiment. An improved Haussdorff-DBSCAN based scheme combined with indoor positional semantics is proposed to realize the trajectory clustering of the passenger trajectories, considering the characteristics of the UWB location data. Afterwards, the LSTM neural network is applied to predict the changing similarity of the suspected companions. Traditional Hausdorff algorithm does not consider the consistency of trajectory timing while calculating the trajectory similarity, and the introduction of positional semantic sequence can solve this problem well. In the first phase, the passenger trajectory data set is input to the improved Hausdorff-DBSCAN algorithm, and the clustering radius is determined according to the overall similarity threshold of trajectories. The outputs are the emerging clusters of passenger trajectories in the same companion group. In the second phase, the LSTM neural network takes the point similarity sequence with a fixed time window as the input to predict the point similarity value at the next time. The sequential change of passengers companion relationship is analyzed by the similarity threshold and prediction results. The validity of the presented algorithm is demonstrated by the trajectory data obtained from the passengers simulation on one deck of the cruise under study, which is modeled in Anylogic. The results indicate that the precision of the proposed algorithm reaches 0.92, the recall value reaches 0.95 and the F1 value is 0.934, which are at least 5.7 percent, 8.0 percent and 6.7 percent higher than the comparing algorithm. The LSTM neural network also shows a promising effect in predicting the changing trend of the similarity, for the loss is at a stable level of 3 to 4 percent.

     

  • loading
  • [1]
    HE S, CHAN S H G. Wi-Fi fingerprint-based indoor positioning:Recent advances and comparisons[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1):466-490.
    [2]
    DARDARI D, CLOSAS P, DJURIC P M. Indoor tracking:Theory, methods, and technologies[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4):1263-1278.
    [3]
    仇功达, 何杰, 杨明, 等.异常轨迹数据预警与预测关键技术综述[J].系统仿真学报, 2017, 29(11):2608-2617. QIU Gongda, HE Jie, YANG Ming. Key technologies of precaution and prediction of abnormal spatial-temporal trajectory:a review of recent advances[J]. Journal of System Simulation, 2017, 29(11):2608-2617.(in Chinese)
    [4]
    许佳捷, 郑凯, 池明旻, 等.轨迹大数据:数据、应用与技术现状[J].通信学报, 2015, 36(12):97-105. XU Jiajie, ZHENG Kai, CHI Mingmin. Trajectory big data:data, applications and techniques[J]. Journal on Communications, 2015, 36(12):97-105.(in Chinese)
    [5]
    李颖, 赵莉, 赵祥模, 等.基于大货车GPS数据的轨迹相似性度量有效性研究[J].中国公路学报, 2020, 33(2):146-157. LI Ying, ZHAO Li, ZHAO Xiangmo. Effectiveness of trajectory similarity measures based on truck GPS data[J]. China Journal of Highway and Transport, 2020, 33(2):146-157.(in Chinese)
    [6]
    牟乃夏, 徐玉静, 张恒才, 等.移动轨迹聚类方法研究综述[J].测绘通报, 2018(1):1-7. MOU Naixia, XU Yujing, ZHANG Hengcai. A review of the mobile trajectory clustering methods[J]. Bulletin of Surveying and Mapping, 2018(1):1-7.(in Chinese)
    [7]
    JEUNG H, et al. Discovery of convoys in trajectory databases[J]. Proceedings of the VLDB Endowment, 2008, 1(1):1068-1080.
    [8]
    冯慧芳, 杨振娟.基于时空相似度聚类的热点载客路径挖掘[J].交通运输系统工程与信息, 2019, 19(5):94-100. FENG Huifang, YANG Zhenjuan. Hot passenger routes mining based on spatial-temporal similarity clustering[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5):94-100.(in Chinese)
    [9]
    唐炉亮, 于智伟, 任畅, 等.基于车载GPS轨迹的立体交叉口空间结构信息获取方法[J].交通运输工程学报, 2019, 19(5):170-179. TANG Luliang, YU Zhiwei, REN Chang. Information acquisition method of three-dimensional intersection spatial structure based on vehicle GPS trajectory[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5):170-179.(in Chinese)
    [10]
    周洋, 杨超.基于时空聚类算法的轨迹停驻点识别研究[J].交通运输系统工程与信息, 2018, 18(4):88-95. ZHOU Yang, YANG Chao. Anchors Identification in trajectory based on temporospatial clustering algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4):88-95.(in Chinese)
    [11]
    ORAKZAI F, PEDERSEN T B, CALDERS T. Distributed mining of convoys in large scale datasets[J]. GeoInformatica, 2021(1):1-44.
    [12]
    周于涛, 吴华意, 成洪权, 等.结合自注意力机制和结伴行为特征的行人轨迹预测模型[J].武汉大学学报(信息科学版), 2020, 45(12):1989-1996. ZHOU Yutao,WU Huayi,CHENG Hongquan. Pedestrian trajectory prediction model combining self attention mechanism and companion behavior characteristics[J]. Geomatics and Information Science of Wuhan University,2020,45(12):1989-1996.(in Chinese)
    [13]
    连静, 王欣然, 李琳辉, 等.基于人-车交互的行人轨迹预测[J].中国公路学报, 2021, 34(5):215-223. LIAN Jing, WANG Xinran, LI Linhui. Pedestrian trajectory prediction based on human-vehicle interaction[J]. China Journal of Highway and Transport, 2021, 34(5):215-223.(in Chinese)
    [14]
    赛斌, 曹自强, 谭跃进, 等.基于目标跟踪与轨迹聚类的行人移动数据挖掘方法研究[J].系统工程理论与实践, 2021, 41(1):231-239. SAI Bin, CAO Ziqiang, TAN Yuejin. Pedestrian data mining with object tracking and trajectory clustering[J]. Systerms Engineering Theory & Practice, 2021, 41(1):215-223.(in Chinese)
    [15]
    夏英, 杨雪, 张旭.基于RFID位置语义的室内移动轨迹聚类算法[J].重庆邮电大学学报(自然科学版), 2018, 30(3):383-389. XIA Ying,YANG Xue,ZHANG Xu. Clustering algorithm for indoor moving trajectory based on RFID location semantics[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2018, 30(3):383-389.(in Chinese)
    [16]
    HUANG Weiqing, CHANG Ding, WANG Siye, et al. An Efficient Clustering Mining Algorithm for Indoor Moving Target Trajectory Based on the Improved AGNES[C]. Proceedings of the 2015 IEEE Trustcom. Washington, D.C.:IEEE, 2015.
    [17]
    陈建伟, 李建波.基于编码器-解码器模型的人群移动预测分析[J].计算机应用与软件, 2021, 38(6):77-83+125.

    CHEN Jianwei, LI Jianbo. Human mobility predictive analysis based on encoder-decoder model[J]. Computer Applications and Software, 2021, 38(6):77-83+125.
    [18]
    张宇, 吴升, 赵志远, 等.顾及相似用户特征的个人位置预测算法[J].武汉大学学报(信息科学版), 2021.

    ZHANG Yu, WU Sheng, ZHAO Zhiyuan, et al. Personal location prediction algorithm considering similar user characteristics[J]. Wuhan University Journal (Geomatics & Information Science), 2021.
    [19]
    蒋通, 崔良中, 周钢, 等.多步骤船舶轨迹聚类方法研究与实现[J].舰船电子工程, 2021, 41(9):53-57+92.

    JIANG Tong, CUI Liangzhong, ZHOU Gang, et al. Research and implementation of multi-step ship track clustering method[J]. Ship Electronic Engineering, 2021, 41(9):53-57+92.
    [20]
    EDLA D R,JANA P K. A grid clustering algorithmusing cluster boundaries[J]. Information andCommunication Technologies, 2013, 15(3):254-259.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6266) PDF downloads(2456) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return