| Citation: | ZHANG Xunxun, ZHU Xu, LI Xiaowei. A Vehicle Re-identification Method Based on Feature Interaction and Multi-modal Adaptive Fusion[J]. Journal of Transport Information and Safety, 2025, 43(4): 110-118. doi: 10.3963/j.jssn.1674-4861.2025.04.011 |
| [1] |
SUN W, HU Y, ZHANG X, et al. Adversarial style-irrelevant feature learning with refined soft pseudo labels for domain-adaptive vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (12): 20602-20615. doi: 10.1109/TITS.2024.3480156
|
| [2] |
张逸凡, 聂琳真, 黄灏然, 等. 基于改进YOLOv5算法的道路交通参与者实时检测方法[J]. 交通信息与安全, 2024, 42 (1): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.01.013
ZHANG Y F, NIE L Z, HUANG H R, et al. A method of real-time detection for road traffic participants based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2024, 42(1): 115-123(. in Chinese doi: 10.3963/j.jssn.1674-4861.2024.01.013
|
| [3] |
张念, 张亮. 基于深度学习的公路货车车型识别[J]. 交通运输工程学报, 2023, 23(1): 267-279.
ZHANG N, ZHANG L. Type recognition of highway trucks based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 267-279(. in Chinese
|
| [4] |
梁华刚, 黄伟浩, 薄颖, 等. 基于多特征融合的隧道场景车辆再识别[J]. 中国公路学报, 2023, 36(8): 280-291.
LIANG H G, HUANG W H, BO Y, et al. Multi-feature-fusion-based vehicle re-identification for tunnel scenes[J]. China Journal of Highway Transportation, 2023, 36(8): 280-291.
|
| [5] |
徐岩, 郭晓燕, 荣磊磊. 无监督学习的车辆重识别方法研究综述[J]. 计算机科学与探索, 2023, 17(5): 1017-1037.
XU Y, GUO X Y, RONG L L. Review of research on vehicle re-identification methods with unsupervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17 (5): 1017-1037(. in Chinese
|
| [6] |
KHORRAMSHAHI P, SHENOY V, CHELLAPPA R. Robust and scalable vehicle re-identification via self-supervision[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
|
| [7] |
ZHANG F, ZHANG L, ZHANG H, et al. Image-to-image domain adaptation for vehicle re-identification[J]. Multimedia Tools and Applications, 2023, 82(26): 40559-40584. doi: 10.1007/s11042-023-14839-7
|
| [8] |
SHEN F, XIE Y, ZHU J, et al. Git: graph interactive transformer for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2023, 32(1): 1039-1051.
|
| [9] |
HE Z, ZHAO H, WANG J, et al. Multi-level progressive learning for unsupervised vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2022, 72(4): 4357-4371.
|
| [10] |
马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010
MA H W, ZHANG D, LI Y L, et al. A ship detection algorithm for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104(. in Chinese doi: 10.3963/j.jssn.1674-4861.2023.01.010
|
| [11] |
ZAKRIA, DENG J H, KHOKHAR M S, et al. Trends in vehicle re-identification past, present, and future: a comprehensive review[J]. Mathematics. 2021, 24(9): 3162.
|
| [12] |
蓝章礼, 王超, 杨晴晴, 等. 基于多粒度特征分割的车辆重识别算法[J]. 重庆交通大学学报(自然科学版), 2022, 41 (9): 7-15.
LAN Z L, WANG C, YANG Q Q, et al. Vehicle re-identification algorithm based on multi-granularity feature segmentation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(9): 7-15(. in Chinese
|
| [13] |
刘凯, 李浥东, 林伟鹏. 车辆再识别技术综述[J]. 智能科学与技术学报, 2020, 2(1): 11-25.
LIU K, LI Y D, LIN W P. A survey on vehicle re-identification[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(1): 11-25(. in Chinese
|
| [14] |
WANG S, WANG Q, MIN W, et al. Trade-off background joint learning for unsupervised vehicle re-identification[J]. The Visual Computer, 2023, 39(8): 3823-3835. doi: 10.1007/s00371-023-03034-2
|
| [15] |
ZHAO Q Q, ZHAN S M, CHENG R, et al. A benchmark for vehicle re-identification in mixed visible and infrared domains[J]. IEEE Signal Processing Letters, 2024, 31: 726-730. doi: 10.1109/LSP.2024.3370492
|
| [16] |
LI H, LI C, ZHU X, et al. Multi-spectral vehicle re-Identification: A challenge[C]. AAAI Conference on Artificial Intelligence, New York, America: AAAI, 2020.
|
| [17] |
ZHENG A H, ZHU X P, Ma Z, et al. Cross-directional consistency network with adaptive layer normalization for multi-spectral vehicle re-identification and a high-quality benchmark[J]. Information Fusion, 2023, 100(3): 101901.
|
| [18] |
HE Q L, LU Z F, WANG Z H, et al. Graph-based progressive fusion network for multi-modality vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12431-12447. doi: 10.1109/TITS.2023.3285758
|
| [19] |
YANG L, ZHANG R Y, LI L, et al. SimAM: A simple, parameter-Free attention module for convolutional neural networks[C]. International Conference on Machine Learning. Vienna, Austria: PMLR, 2021.
|
| [20] |
黄文心, 钟忺, 张军, 等. 基于组件超分辨率的多分辨率车辆重识别方法[J]. 武汉理工大学学报, 2022, 44(11): 96-104.
HUANG W X, ZHONG X, ZHANG J, et al. Multi-resolution vehicle re-identification method based on component super-resolution[J]. Journal of Wuhan University of Technology, 2022, 44(11): 96-104(. in Chinese
|
| [21] |
廖琳蔚, 杨卓倩, 杨鸿泰, 等. 基于多粒度级联森林的高排放重型柴油车辆的识别方法[J]. 交通运输工程与信息学报, 2024, 22(4): 166-181.
LIAO L W, YANG Z Q, YANG H T, et al. Identification of high-emission heavy-duty diesel vehicles based on multigrained cascade forest[J]. Journal of Transportation Engineering and Information, 2024, 22(4): 166-181(. in Chinese
|
| [22] |
苏育挺, 陆荣烜, 张为. 基于注意力和自适应权重的车辆重识别算法[J]. 浙江大学学报(工学版), 2023, 57(4): 712-718.
SU Y T, LU R H, ZHANG W. Vehicle re-identification algorithm based on attention mechanism andadaptive weight[J]. Journal of Zhejiang University(Engineering Science), 2023, 57(4): 712-718(. in Chinese
|
| [23] |
孙伟, 赵宇煌, 张小瑞, 等. 基于弱监督注意力和知识共享的车辆重识别[J]. 电子测量与仪器学报, 2023, 37(9): 179-189.
SUN W, ZHAO Y H, ZHANG X R, et al. Weakly supervised attention and knowledge sharing for vehicle re-identification[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(9): 179-189.
|
| [24] |
HE S, LUO H, WANG P, et al. TransReID: transformer-based object re-identification[C]. IEEE/CVF International Conference ComputerVision, Montreal, Canada: IEEE, 2021.
|
| [25] |
GUO J, ZHANG X, LIU Z, et al. Generative and attentive fusion for multi-spectral vehicle re-identification[C]. 7th International Conference Intelligent Computer Signal Processing, Xi'an China: IEEE, 2022.
|