Volume 43 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
ZHANG Xunxun, ZHU Xu, LI Xiaowei. A Vehicle Re-identification Method Based on Feature Interaction and Multi-modal Adaptive Fusion[J]. Journal of Transport Information and Safety, 2025, 43(4): 110-118. doi: 10.3963/j.jssn.1674-4861.2025.04.011
Citation: ZHANG Xunxun, ZHU Xu, LI Xiaowei. A Vehicle Re-identification Method Based on Feature Interaction and Multi-modal Adaptive Fusion[J]. Journal of Transport Information and Safety, 2025, 43(4): 110-118. doi: 10.3963/j.jssn.1674-4861.2025.04.011

A Vehicle Re-identification Method Based on Feature Interaction and Multi-modal Adaptive Fusion

doi: 10.3963/j.jssn.1674-4861.2025.04.011
  • Received Date: 2024-11-15
  • The limited resolution of visible-light sensors under weak illumination conditions and the insufficient representational capacity of a single modality lead to low vehicle re-identification accuracy. To address this problem, a vehicle re-identification method based on dynamic feature interaction and adaptive multi-modal fusion is proposed. In terms of network architecture, the SimAM module is embedded into the convolutional layers of the YOLOv9 backbone network without introducing additional parameters, enabling the modeling of spatial and channel relationships within features and extracting initial representations from visible, near-infrared, and far-infrared modalities. A multi-modal feature interaction module is then constructed to perform refined feature extraction and cross-modal information exchange, thereby obtaining enhanced features for all three modalities. Furthermore, a multi-modal adaptive feature fusion network is designed, in which the weighting coefficients for each modality are adaptively generated based on global vectors and mask vectors, achieving effective feature fusion. To handle large intra-class variance, small inter-class differences, and significant appearance variations of the same vehicle across different scenarios, ajoint loss function combining cross-entropy loss, contrastive loss, and center loss is introduced. The proposed method is trained and validated on the publicly available datasets RGBN300 and RGBNT100. The results show that compared with existing methods, the mean average precision (mAP) and the recognition accuracy of Rank-1, Rank-5, and Rank-10 are improved to varying degrees. Among them, mAP is improved by 20.6%, 29.0%, 5.0%, and 3.5% on the RGBN300 dataset, and 22.5%, 12.0%, 3.7%, and 3.0% on the RGBNT100 dataset. Rank-1, Rank-5, and Rank-10 of the RGBNT100 dataset achieves 95.1%, 96.7%, and 96.9%. The experimental results show that feature interaction and adaptive multi-modal fusion lead to more discriminative features and excellent vehicle re-identification performance.

     

  • loading
  • [1]
    SUN W, HU Y, ZHANG X, et al. Adversarial style-irrelevant feature learning with refined soft pseudo labels for domain-adaptive vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (12): 20602-20615. doi: 10.1109/TITS.2024.3480156
    [2]
    张逸凡, 聂琳真, 黄灏然, 等. 基于改进YOLOv5算法的道路交通参与者实时检测方法[J]. 交通信息与安全, 2024, 42 (1): 115-123. doi: 10.3963/j.jssn.1674-4861.2024.01.013

    ZHANG Y F, NIE L Z, HUANG H R, et al. A method of real-time detection for road traffic participants based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2024, 42(1): 115-123(. in Chinese doi: 10.3963/j.jssn.1674-4861.2024.01.013
    [3]
    张念, 张亮. 基于深度学习的公路货车车型识别[J]. 交通运输工程学报, 2023, 23(1): 267-279.

    ZHANG N, ZHANG L. Type recognition of highway trucks based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 267-279(. in Chinese
    [4]
    梁华刚, 黄伟浩, 薄颖, 等. 基于多特征融合的隧道场景车辆再识别[J]. 中国公路学报, 2023, 36(8): 280-291.

    LIANG H G, HUANG W H, BO Y, et al. Multi-feature-fusion-based vehicle re-identification for tunnel scenes[J]. China Journal of Highway Transportation, 2023, 36(8): 280-291.
    [5]
    徐岩, 郭晓燕, 荣磊磊. 无监督学习的车辆重识别方法研究综述[J]. 计算机科学与探索, 2023, 17(5): 1017-1037.

    XU Y, GUO X Y, RONG L L. Review of research on vehicle re-identification methods with unsupervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17 (5): 1017-1037(. in Chinese
    [6]
    KHORRAMSHAHI P, SHENOY V, CHELLAPPA R. Robust and scalable vehicle re-identification via self-supervision[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
    [7]
    ZHANG F, ZHANG L, ZHANG H, et al. Image-to-image domain adaptation for vehicle re-identification[J]. Multimedia Tools and Applications, 2023, 82(26): 40559-40584. doi: 10.1007/s11042-023-14839-7
    [8]
    SHEN F, XIE Y, ZHU J, et al. Git: graph interactive transformer for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2023, 32(1): 1039-1051.
    [9]
    HE Z, ZHAO H, WANG J, et al. Multi-level progressive learning for unsupervised vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2022, 72(4): 4357-4371.
    [10]
    马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010

    MA H W, ZHANG D, LI Y L, et al. A ship detection algorithm for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104(. in Chinese doi: 10.3963/j.jssn.1674-4861.2023.01.010
    [11]
    ZAKRIA, DENG J H, KHOKHAR M S, et al. Trends in vehicle re-identification past, present, and future: a comprehensive review[J]. Mathematics. 2021, 24(9): 3162.
    [12]
    蓝章礼, 王超, 杨晴晴, 等. 基于多粒度特征分割的车辆重识别算法[J]. 重庆交通大学学报(自然科学版), 2022, 41 (9): 7-15.

    LAN Z L, WANG C, YANG Q Q, et al. Vehicle re-identification algorithm based on multi-granularity feature segmentation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(9): 7-15(. in Chinese
    [13]
    刘凯, 李浥东, 林伟鹏. 车辆再识别技术综述[J]. 智能科学与技术学报, 2020, 2(1): 11-25.

    LIU K, LI Y D, LIN W P. A survey on vehicle re-identification[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(1): 11-25(. in Chinese
    [14]
    WANG S, WANG Q, MIN W, et al. Trade-off background joint learning for unsupervised vehicle re-identification[J]. The Visual Computer, 2023, 39(8): 3823-3835. doi: 10.1007/s00371-023-03034-2
    [15]
    ZHAO Q Q, ZHAN S M, CHENG R, et al. A benchmark for vehicle re-identification in mixed visible and infrared domains[J]. IEEE Signal Processing Letters, 2024, 31: 726-730. doi: 10.1109/LSP.2024.3370492
    [16]
    LI H, LI C, ZHU X, et al. Multi-spectral vehicle re-Identification: A challenge[C]. AAAI Conference on Artificial Intelligence, New York, America: AAAI, 2020.
    [17]
    ZHENG A H, ZHU X P, Ma Z, et al. Cross-directional consistency network with adaptive layer normalization for multi-spectral vehicle re-identification and a high-quality benchmark[J]. Information Fusion, 2023, 100(3): 101901.
    [18]
    HE Q L, LU Z F, WANG Z H, et al. Graph-based progressive fusion network for multi-modality vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12431-12447. doi: 10.1109/TITS.2023.3285758
    [19]
    YANG L, ZHANG R Y, LI L, et al. SimAM: A simple, parameter-Free attention module for convolutional neural networks[C]. International Conference on Machine Learning. Vienna, Austria: PMLR, 2021.
    [20]
    黄文心, 钟忺, 张军, 等. 基于组件超分辨率的多分辨率车辆重识别方法[J]. 武汉理工大学学报, 2022, 44(11): 96-104.

    HUANG W X, ZHONG X, ZHANG J, et al. Multi-resolution vehicle re-identification method based on component super-resolution[J]. Journal of Wuhan University of Technology, 2022, 44(11): 96-104(. in Chinese
    [21]
    廖琳蔚, 杨卓倩, 杨鸿泰, 等. 基于多粒度级联森林的高排放重型柴油车辆的识别方法[J]. 交通运输工程与信息学报, 2024, 22(4): 166-181.

    LIAO L W, YANG Z Q, YANG H T, et al. Identification of high-emission heavy-duty diesel vehicles based on multigrained cascade forest[J]. Journal of Transportation Engineering and Information, 2024, 22(4): 166-181(. in Chinese
    [22]
    苏育挺, 陆荣烜, 张为. 基于注意力和自适应权重的车辆重识别算法[J]. 浙江大学学报(工学版), 2023, 57(4): 712-718.

    SU Y T, LU R H, ZHANG W. Vehicle re-identification algorithm based on attention mechanism andadaptive weight[J]. Journal of Zhejiang University(Engineering Science), 2023, 57(4): 712-718(. in Chinese
    [23]
    孙伟, 赵宇煌, 张小瑞, 等. 基于弱监督注意力和知识共享的车辆重识别[J]. 电子测量与仪器学报, 2023, 37(9): 179-189.

    SUN W, ZHAO Y H, ZHANG X R, et al. Weakly supervised attention and knowledge sharing for vehicle re-identification[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(9): 179-189.
    [24]
    HE S, LUO H, WANG P, et al. TransReID: transformer-based object re-identification[C]. IEEE/CVF International Conference ComputerVision, Montreal, Canada: IEEE, 2021.
    [25]
    GUO J, ZHANG X, LIU Z, et al. Generative and attentive fusion for multi-spectral vehicle re-identification[C]. 7th International Conference Intelligent Computer Signal Processing, Xi'an China: IEEE, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(9)

    Article Metrics

    Article views (2) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return