| Citation: | KONG Lingzhi, XIONG Changan, TANG Jintao, YANG Wenchen. Multi-classification Prediction and Interaction Effects of Determinants for Accident Severity on Two-lane Highways in Plateau Mountainous Region[J]. Journal of Transport Information and Safety, 2025, 43(4): 67-74. doi: 10.3963/j.jssn.1674-4861.2025.04.007 |
| [1] |
SANTOS K, DIAS J P, AMADO C. A literature review of machine learning algorithms for crash injury severity prediction[J]. Journal Of Safety Research, 2022, 80: 254-269. doi: 10.1016/j.jsr.2021.12.007
|
| [2] |
戢晓峰, 谢世坤, 覃文文, 等. 基于轨迹数据的山区危险性弯道路段交通事故风险动态预测[J]. 中国公路学报, 2022, 35 (4): 277-285.
JI X F, XIE S K, QIN W W, et al. Dynamic prediction of traffic accident risk in risky curve sections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2022, 35(4): 277-285. (in Chinese)
|
| [3] |
陆欢, 戢晓峰, 杨文臣, 等. 高原山区公路环境下交通事故形态致因分析[J]. 中国安全科学学报, 2019, 29(5): 44-49.
L H, JI X F, YANG W C et al. Cause analysis of different patterns of traffic accidents on plateau mountain roads[J]. China Safety Science Journal, 2019, 29(5): 44-49. (in Chinese)
|
| [4] |
LI J, FANG S, GUO J, et al. A motorcyclist-injury severity analysis: a comparison of single-, two-, and multi-vehicle crashes using latent class ordered probit model[J]. Accident Analysis & Prevention, 2021, 151: 105953.
|
| [5] |
RUSDI R, MAZHARUL H M, POOYAN A A, et al. Applying a random parameters Negative Binomial Lindley model to examine multi-vehicle crashes along rural mountainous highways in Malaysia[J]. Accident Analysis & Prevention, 2018, 119: 80-90.
|
| [6] |
BHAM G H, JAVVADI B S, MANEPALLI U. Multinomial logistic regression model for single-vehicle and multivehicle collisions on urban u. s. highways in arkansas[J]. Journal of Transportation Engineering, 2012, 138(6): 786-797. doi: 10.1061/(ASCE)TE.1943-5436.0000370
|
| [7] |
LI Z, LIU P, WANG W, et al. Using support vector machine models for crash injury severity analysis[J]. Accident Analysis & Prevention, 2012, 45: 478-486.
|
| [8] |
WANG L-L, NGAN H Y T, YUNG N H C. Automatic incident classification for large-scale traffic data by adaptive boosting SVM[J]. Information Sciences, 2018, 467: 59-73. doi: 10.1016/j.ins.2018.07.044
|
| [9] |
LI K, XU H, LIU X. Analysis and visualization of accidents severity based on LightGBM-TPE[J]. Chaos, Solitons & Fractals, 2022, 157: 111987.
|
| [10] |
SILVA P B, ANDRADE M, FERREIRA S. Machine learning applied to road safety modeling: a systematic literature review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(6): 775-790. doi: 10.1016/j.jtte.2020.07.004
|
| [11] |
张开冉, 阚丁萍, 陈多多. 不同等级农村公路交通事故严重程度预测研究[J]. 安全与环境学报, 2024, 24(4): 1515-1522.
ZHANG K R, KAN D P, CHEN D D. Study on predicting the severity of traffic accidents in different grades of rural highways[J]. Journal of Safety and Environmemt, 2024, 24 (4): 1515-1522. (in Chinese)
|
| [12] |
SHEN X, WEI S. Application of XGBoost for hazardous material road transport accident severity analysis[J]. IEEE Access, 2020, 8: 206806-206819. doi: 10.1109/ACCESS.2020.3037922
|
| [13] |
QU Y, LIN Z, LI H, et al. Feature recognition of urban road traffic accidents based on GA-XGBoost in the context of big data[J]. IEEE Access, 2019(7): 170106-170115.
|
| [14] |
HIJAZI H, SATTAR K, AL-AHMADI H M, et al. Comparative study for optimized deep learning-based road accidents severity prediction models[J]. Arabian Journal for Science and Engineering, 2024, 49(4): 5853-5873. doi: 10.1007/s13369-023-08510-4
|
| [15] |
TANG J, ZHENG L, HAN C, et al. Statistical and machine-learning methods for clearance time prediction of road incidents: a methodology review[J]. Analytic Methods in Accident Research, 2020, 27: 100123. doi: 10.1016/j.amar.2020.100123
|
| [16] |
高雪林, 汤厚骏, 沈佳平, 等. 基于XGBoost的高速公路事故类型及严重程度预测方法[J]. 交通信息与安全, 2023, 41 (4): 55-63. doi: 10.3963/j.jssn.1674-4861.2023.04.006
GAO X L, TANG H J, SHEN J P, et al. A method for predicting the type and severity of freeway accidents based on XGBoost[J]. Journal of Transport Information and Safety, 2023, 41(4): 55-63. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.006
|
| [17] |
LEE J, CHAE J, YOON T, et al. Traffic accident severity analysis with rain-related factors using structural equation modeling: a case study of Seoul city[J]. Accident Analysis & Prevention, 2018, 112: 1-10.
|
| [18] |
WEI F, XU P, GUO Y, et al. Exploring the injury severity of vulnerable road users to truck crashes by ensemble learning[J]. Journal of Transportation Safety & Security, 2024, 16 (11): 1259-1282.
|
| [19] |
AFSHAR F, SEYEDABRISHAMI S, MORIDPOUR S. Application of extremely randomised trees for exploring influential factors on variant crash severity data[J]. Scientific Reports, 2022, 12(1): 11476. doi: 10.1038/s41598-022-15693-7
|
| [20] |
李英帅, 张旭, 王卫杰, 等. 基于随机森林的电动自行车骑行者事故伤害程度影响因素分析[J]. 交通运输系统工程与信息, 2021, 21(1): 196-200.
LI Y S, ZHANG X, WANG W J, et al. Factors affecting electric bicycle rider injury inaccident based on random forest model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 196-200. (in Chinese)
|
| [21] |
MA Z, MEI G, CUOMO S. An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors[J]. Accident Analysis & Prevention, 2021, 160: 106322.
|
| [22] |
G Y, A T, G P. Investigation of road accident severity per vehicle type[J]. Transportation research procedia, 2017, 25: 2076-2083. doi: 10.1016/j.trpro.2017.05.401
|
| [23] |
JOHNSON P M, BARBOUR W, CAMP J V, et al. Usingmachine learning to examine freight network spatial vulnerabilities to disasters: a new take on partial dependence plots[J]. Transportation Research Interdisciplinary Perspectives, 2022, 14: 100617. doi: 10.1016/j.trip.2022.100617
|
| [24] |
PARSA A B, MOVAHEDI A, TAGHIPOUR H, et al. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis[J]. Accident Analysis & Prevention, 2020, 136: 105405.
|