Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
LI Xiaomei, LYU Bin. Predicting the Demand of Ride-Hailing Based on a QRF-SA-ConvLSTM Model[J]. Journal of Transport Information and Safety, 2025, 43(2): 127-135. doi: 10.3963/j.jssn.1674-4861.2025.02.014
Citation: LI Xiaomei, LYU Bin. Predicting the Demand of Ride-Hailing Based on a QRF-SA-ConvLSTM Model[J]. Journal of Transport Information and Safety, 2025, 43(2): 127-135. doi: 10.3963/j.jssn.1674-4861.2025.02.014

Predicting the Demand of Ride-Hailing Based on a QRF-SA-ConvLSTM Model

doi: 10.3963/j.jssn.1674-4861.2025.02.014
  • Received Date: 2024-01-18
    Available Online: 2025-09-29
  • Considering the spatiotemporal features and predictive uncertainty in the demand prediction of ride-hailing are essential for improving the efficiency and robustness of the transportation system. This study proposes a novel prediction framework that integrates quantile regression forests (QRF) and a self-attention convolutional long short-term memory network (SA-ConvLSTM) to jointly optimize spatiotemporal feature learning and probabilistic modeling, which could lead to high-precision prediction and uncertainty estimation. First, the model employs QRF to generate the distributions of predicted demand within specified probability intervals from historical spatiotemporal data. It then establishes a spatiotemporal probability matrix by weighted fusion of original data through the attention mechanism. The matrix is then fed into the SA-ConvLSTM module, where the convolutional structure extracts local spatial patterns, the self-attention mechanism focuses on key spatiotemporal nodes, and LSTM captures long-term temporal dependencies. Finally, a multi-task output layer simultaneously optimizes point predictions and interval estimations. Combining the ability of distributional modeling of QRF and the advantage of extraction of spatiotemporal feature of deep learning, the proposed model improves both prediction accuracy and uncertainty estimation. The study validates the model's effectiveness and accuracy using Didi's open-source dataset of ride-hailing trajectories within the second ring road in Xi'an. The results show that in terms of mean prediction, the proposed model reduces mean absolute error and mean squared error by 21% and 17.2%, respectively, comparing to the SA-ConvLSTM baseline; in terms of uncertainty estimation, the prediction interval coverage probability at 95% confident level improves by 5.3%, 2.5%, and 0.9% comparing to linear quantile regression (LQR), QRF, and SA-ConvLSTM, respectively, while the average width of the prediction results is reduced by 41.5%, 30%, and 18.5%. These results validate the proposed model's goodness of fit in terms of both predictive accuracy and reliability.

     

  • loading
  • [1]
    张政, 陈艳艳, 梁天闻. 基于网约车数据的城市区域出行时空特征识别与预测研究[J]. 交通运输系统工程与信息, 2020, 20(3): 89-94.

    ZHANG Z, CHEN Y Y, LIANG T W. Research on identification and prediction of spatial-temporal characteristics of urban regional travel based on ride-hailing data[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 89-94. (in Chinese)
    [2]
    席殷飞, 刘钟锴, 杨佩云, 等. 网约车出行需求预测方法[J]. 上海大学学报(自然科学版), 2020, 26(3): 328-341.

    XI Y F, LIU Z K, YANG P Y, et al. Ride-hailing travel demand forecasting methods[J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(3): 328-341. (in Chinese)
    [3]
    王迪, 李颖, 胡宇娇, 等. 基于机器学习的网约车拼车需求预测研究[J]. 汽车安全与节能学报, 2024, 15(5): 723-731.

    WANG D, LI Y, HU J Y, et al. Research on carpooling demand prediction study based on machine learning[J]. Journal of Automotive Safety and Energy, 2024, 15(5): 723-731. (in Chinese)
    [4]
    李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41 (3): 157-165, 174. doi: 10.3963/j.jssn.1674-4861.2023.03.017

    LI Z H, SHEN T Y, WEN Y J, et al. Prediction of ride-hailing demand and identification of anomalies based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.017
    [5]
    KIM T, SHARDA S, ZHOU X S, et al. A stepwise interpretable machine learning framework using linear regression (LR)and long short-term memory(LSTM): city-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV)service[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102786. doi: 10.1016/j.trc.2020.102786
    [6]
    XU J, RAHMATIZADEH R, BOLONI L, et al. Real-time prediction of taxi demand using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2572-2581.
    [7]
    LIPPI M, BERTINI M, FRASCONI P. An experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 871-882. doi: 10.1109/TITS.2013.2247040
    [8]
    黄昕, 毛政元. 基于时空多图卷积网络的网约车乘客需求预测[J]. 地球信息科学学报, 2023, 25(2): 311-323.

    HUANG X, MAO Z Y. Prediction of ride-hailing passenger demand based on spatio-temporal multi-graph convolutional networks[J]. Journal of Geo-Information Science, 2023, 25(2): 311-323(in Chinese).
    [9]
    那绪博, 张莹, 李沐阳, 等. 基于ODCG的网约车需求预测模型[J]. 山东大学学报(工学版), 2023, 53(5): 48-56.

    NA X B, ZHANG Y, LI M Y, et al. An online car-hailing demand forecasting model based on ODCG[J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 48-56. (in Chinese)
    [10]
    高宇星, 宗威, 胡凯, 等. 基于CNN-ATTBiLSTM网约车需求短时预测[J]. 运筹与管理, 2024, 33(11): 211-217.

    GAO Y X, ZONG W, HU K, et al. Short-term demand forecasting for online car-hailing based on CNN-ATTBiLSTM networks[J]. Operations Research and Management Science, 2024, 33(11): 211-217. (in Chinese)
    [11]
    LIN Z H, LI M M, ZHENG Z B, et al. Self-attention convl-stm for spatiotemporal prediction[C]. 34th AAAI Conference on Artificial Intelligence, New York: AAAI, 2020.
    [12]
    RODRIGUES F, PEREIRA F C. Beyond expectation: deep joint mean and quantile regression for spatiotemporal problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020(12): 1-13.
    [13]
    GAWLIKOWSKI J, TASSI R N, ALI M, et al. A survey of uncertainty in deep neural networks[J]. Artificial Intelligence Review, 2023, 56: 1513-1589. doi: 10.1007/s10462-023-10562-9
    [14]
    WU D, GAO L, CHINAZZI M, et al. Quantifying uncertainty in deep spatiotemporal forecasting[C]. 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore: ACM, 2021.
    [15]
    GUO J H, WILLIAMS B M. Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters[J]. Transportation Research Record, 2010, 2175(1): 28-37. doi: 10.3141/2175-04
    [16]
    LIU Y, LIU Z, LI X G, et al. Dynamic traffic demand uncertainty prediction using radio-frequency identification data and link volume data[J]. IET Intelligent Transport Systems, 2019, 13(8): 1309-1317. doi: 10.1049/iet-its.2018.5317
    [17]
    CHEN Q X, LV B, HAO B B, et al. Modelling multiple quantiles together with the mean based on SA-ConvLSTM for taxi pick-up prediction[J]. IET Intelligent Transport Systems, 2022, 16(11): 1623-1632. doi: 10.1049/itr2.12238
    [18]
    LIU G, WANG Y, QIN H, et al. Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method[J]. Renewable Energy, 2023, 209: 231-247. doi: 10.1016/j.renene.2023.03.094
    [19]
    MALLICK T, MACFARLANE J, BALAPRAKASH P. Uncertainty quantification for traffic forecasting using deep-ensemble-based spatiotemporal graph neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9141-9152. doi: 10.1109/TITS.2024.3381099
    [20]
    KHAN N, SHAHID S, JUNENG L, et al. Prediction of heat waves in Pakistan using quantile regression forests[J]. Atmospheric research, 2019, 221: 1-11. doi: 10.1016/j.atmosres.2019.01.024
    [21]
    韩印, 李媛媛, 李文翔, 等. 基于轨迹数据的网约车排放时空特征分析[J]. 交通运输系统工程与信息, 2022, 22(1): 234-242.

    HAN Y, LI Y Y, LI W X, et al. Analyzing spatiotemporal characteristics of ridesourcing emissions based on trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 234-242. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return