Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
YAN Yuchen, WANG Yuxin, QUAN Wei. Urban Adaptive Travel Hotspot Detection and Area Division Method[J]. Journal of Transport Information and Safety, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010
Citation: YAN Yuchen, WANG Yuxin, QUAN Wei. Urban Adaptive Travel Hotspot Detection and Area Division Method[J]. Journal of Transport Information and Safety, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010

Urban Adaptive Travel Hotspot Detection and Area Division Method

doi: 10.3963/j.jssn.1674-4861.2025.02.010
  • Received Date: 2024-07-06
    Available Online: 2025-09-29
  • To address the limitations of fixed bandwidth hotspot detection in multi-density travel data and the spatial heterogeneity distortion from traditional zoning methods, this study proposes an adaptive hotspot detection and dy-namic regional division method for urban transportation. An adaptive travel density estimation model is developed. A global initial bandwidth is determined via pilot estimation, and sensitivity parameters are calibrated using maxi-mum likelihood estimation. Local bandwidth correction factors and a dynamic bandwidth adjustment mechanism en-able automatic research bandwidth regulation. A multilevel hotspot identification technology is developed, combin-ing moving window extreme value detection with natural breaks classification to form a travel hotspot evaluation system. Furthermore, Voronoi polygons are generated using the hotspots as control points to serve as basic analysis units while preserving spatial heterogeneity characteristics. The effectiveness of regional division is evaluated using 5 indicators, including travel heat, Moran's index, and others. Empirical analysis using Harbin's main urban area taxi trajectory data shows that, compared with fixed bandwidth methods, the proposed method increases identified hotspots by 2.1 to 6.7 times. The standard deviation of regional travel heat differences is 572.8. The average dis-tance between point data centroids within areal elements and the geometric center is 137.8 m, a 15.1% to 74.3% re-duction from traditional grid methods, verifying the homogeneity advantage of the regional division. The nugget to sill ratio drops to 0.135, and internal unit variation decreases by 39.6%, indicating the method effectively retains da-ta aggregation characteristics and reduces the modifiable areal unit problem's impact. The adaptive method identifies 1, 719 travel hotspots in the study area and accurately locates road intersection hotspots in areas like Harbin West Station, with clear boundaries and explicit geographical semantics. The results provide an adaptive framework for multi-density travel data analysis, supporting applications such as taxi dispatching and demand forecasting.

     

  • loading
  • [1]
    李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41(3): 157-165, 174. doi: 10.3963/jjssn.1674-4861.2023.03.017

    LI Z H, SHEN T Y, WEN Y J, et al. Order demand prediction and anomaly-point identification for online car-hailing orders based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese) doi: 10.3963/jjssn.1674-4861.2023.03.017
    [2]
    LIANG X, BAKER J, DELLAPOSTA D, et al. Is your neighbor your friend? Scan methods for spatial social network hotspot detection[J]. Transactions in GIS, 2023, 27(3): 607-625. doi: 10.1111/tgis.13050
    [3]
    ZHENG H, GAO S, CAI C, et al. A rapid density method for taxi passengers hot spot recognition and visualization based on DBSCAN+[J]. Scientific Reports, 2021, 11(1): 1-13. doi: 10.1038/s41598-020-79139-8
    [4]
    龙雪琴, 周萌, 赵欢, 等. 基于网络核密度的网约车上下客热点识别[J]. 交通运输系统工程与信息, 2021, 21(3): 86-93.

    LONG X Q, ZHOU M, ZHAO H, et al. Passengers' hot spots identification of online car-hailing based on network kernel density[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 86-93. (in Chinese)
    [5]
    ZHANG G, XU J. Multi-GPU-Parallel and tile-based kernel density estimation for large-scale spatial point pattern analysis[J]. ISPRS International Journal of Geo-Information, 2023, 12(2): 1-20.
    [6]
    OU Y, KIM E, LIU X, et al. Delineating functional regions from road networks: the case of South Korea[J]. Environment and Planning B: Urban Analytics and City Science, 2023, 50(6): 1677-1694. doi: 10.1177/23998083231172198
    [7]
    ZHANG K, LIU Z, ZHENG L. Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-Task learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1480-1490. doi: 10.1109/TITS.2019.2909571
    [8]
    COMBER A, HARRIS P, BRATKOVA K, et al. Handling the MAUP: methods for identifying appropriate scales of aggregation based on measures on spatial and non-spatial variance[J]. AGILE: GIScience Series, 2022, 30(3): 1-5.
    [9]
    GAO Y, LIAO Y. Urban tourism traffic analysis zone division based on floating car data[J]. Promet-Traffic&Transportation, 2023, 35(3): 395-406.
    [10]
    LI C, ZHENG L, JIA N. Network-wide ride-sourcing passenger demand origin-destination matrix prediction with a generative adversarial network[J]. Transportmetrica A: Transport Science, 2022, 20(1): 1-28.
    [11]
    YANG B, TIAN Y, WANG J, et al. How to improve urban transportation planning in big data era? A practice in the study of traffic analysis zone delineation[J]. Transport Policy, 2022, 127: 1-14. doi: 10.1016/j.tranpol.2022.08.002
    [12]
    薛晴婉, 瞿麦青, 彭怀军, 等. 基于多目标蚁群算法的共享单车调度优化方法[J]. 交通信息与安全, 2024, 42(2): 124-135. doi: 10.3963/jssn.1674-4861.2024.02.013

    XUE Q W, QU M Q, PENG H J, et al. A scheduling optimization method of shared bicycles based on a multi-objective ant colony algorithm[J]. Journal of Transport Information and Safety, 2024, 42(2): 124-135. (in Chinese) doi: 10.3963/jssn.1674-4861.2024.02.013
    [13]
    LUO H, CAI J, ZHANG K, et al. A multi-task deep learning model for short-term taxi demand forecasting considering spatiotemporal dependences[J]. Journal of Traffic and Transportation Engineering(English Edition), 2021, 8(1): 83-94. doi: 10.1016/j.jtte.2019.07.002
    [14]
    陈启香, 吕斌, 李显林. 站域建成环境对出租车-地铁组合出行的非线性影响[J]. 交通运输工程学报, 2024, 24(5): 285-300.

    CHEN Q X, LYU B, LI X L. Nonlinear effect of station-area built environment on taxi-metro combined travel[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 285-300. (in Chinese)
    [15]
    CESARIO E, UCHUBILO P I, VINCI A, et al. Multi-density urban hotspots detection in smart cities: a data-driven approach and experiments[J]. Pervasive and Mobile Computing, 2022, 86(1): 1-13.
    [16]
    王梓蒙, 刘艳芳, 罗璇, 等. 基于多源数据的城市活力与建成环境非线性关系研究——以双休日武汉市主城区为例[J]. 地理科学进展, 2023, 42(4): 716-729. (in Chinese)

    WANG Z M, LIU Y F, LUO X, et al. Nonlinear relationship between urban vitality and the built environment based on multi-source data: a case study of the main urban area of Wuhan city at the weekend[J]. Progress in Geography, 2023, 42(4): 716-729. (in Chinese)
    [17]
    TANG J, HU J, WANG Y, et al. Estimating hotspots using a Gaussian mixture model from large-scale taxi GPS trace data[J]. Transportation Safety and Environment, 2019, 1(2): 145-153. doi: 10.1093/tse/tdz006
    [18]
    ZHANG G, ZHU A X, HUANG Q. A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data[J]. International Journal of Geographical Information Science, 2017, 31(10): 2068-2097. doi: 10.1080/13658816.2017.1324975
    [19]
    JAVANMARD R, LEE J, KIM J, et al. The impacts of the modifiable areal unit problem(MAUP)on social equity analysis of public transit reliability[J]. Journal of Transport Geography, 2023, 106(1): 1-13.
    [20]
    刘瑜, 汪珂丽, 邢潇月, 等. 地理分析中的空间效应[J]. 地理学报, 2023, 78(3): 517-531.

    LIU Y, WANG K L, XING X Y, et al. On spatial effects in geographical analysis[J]. Acta Geographica Sinica, 2023, 78(3): 517-531. (in Chinese)
    [21]
    全威, 孙超. 基于热点探测的城市区域公交可达性研究[J]. 交通运输系统工程与信息, 2020, 20(2): 231-236.

    QUAN W, SUN C. Bus accessibility in urban areas based on hot spot detection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 231-236. (in Chinese)
    [22]
    YAN Y, QUAN W, WANG H. A data-driven adaptive geospatial hotspot detection approach in smart cities[J]. Transactions in GIS, 2024, 28(2): 303-325. doi: 10.1111/tgis.13137
    [23]
    葛浩菁, 吕远, 焦朋朋. 基于信令数据的中型城市通勤公交站点优化方法[J]. 交通信息与安全, 2024, 42(1): 142-149. doi: 10.3963/jssn.1674-4861.2024.01.016

    GE H J, LYU Y, JIAO P P. Deployment of bus stop for commuters in medium-sized cities based on signaling data[J]. Journal of Transport Information and Safety, 2024, 42(1): 142-149. (in Chinese) doi: 10.3963/jssn.1674-4861.2024.01.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (38) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return