Citation: | YAN Yuchen, WANG Yuxin, QUAN Wei. Urban Adaptive Travel Hotspot Detection and Area Division Method[J]. Journal of Transport Information and Safety, 2025, 43(2): 85-94. doi: 10.3963/j.jssn.1674-4861.2025.02.010 |
[1] |
李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41(3): 157-165, 174. doi: 10.3963/jjssn.1674-4861.2023.03.017
LI Z H, SHEN T Y, WEN Y J, et al. Order demand prediction and anomaly-point identification for online car-hailing orders based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese) doi: 10.3963/jjssn.1674-4861.2023.03.017
|
[2] |
LIANG X, BAKER J, DELLAPOSTA D, et al. Is your neighbor your friend? Scan methods for spatial social network hotspot detection[J]. Transactions in GIS, 2023, 27(3): 607-625. doi: 10.1111/tgis.13050
|
[3] |
ZHENG H, GAO S, CAI C, et al. A rapid density method for taxi passengers hot spot recognition and visualization based on DBSCAN+[J]. Scientific Reports, 2021, 11(1): 1-13. doi: 10.1038/s41598-020-79139-8
|
[4] |
龙雪琴, 周萌, 赵欢, 等. 基于网络核密度的网约车上下客热点识别[J]. 交通运输系统工程与信息, 2021, 21(3): 86-93.
LONG X Q, ZHOU M, ZHAO H, et al. Passengers' hot spots identification of online car-hailing based on network kernel density[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 86-93. (in Chinese)
|
[5] |
ZHANG G, XU J. Multi-GPU-Parallel and tile-based kernel density estimation for large-scale spatial point pattern analysis[J]. ISPRS International Journal of Geo-Information, 2023, 12(2): 1-20.
|
[6] |
OU Y, KIM E, LIU X, et al. Delineating functional regions from road networks: the case of South Korea[J]. Environment and Planning B: Urban Analytics and City Science, 2023, 50(6): 1677-1694. doi: 10.1177/23998083231172198
|
[7] |
ZHANG K, LIU Z, ZHENG L. Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-Task learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1480-1490. doi: 10.1109/TITS.2019.2909571
|
[8] |
COMBER A, HARRIS P, BRATKOVA K, et al. Handling the MAUP: methods for identifying appropriate scales of aggregation based on measures on spatial and non-spatial variance[J]. AGILE: GIScience Series, 2022, 30(3): 1-5.
|
[9] |
GAO Y, LIAO Y. Urban tourism traffic analysis zone division based on floating car data[J]. Promet-Traffic&Transportation, 2023, 35(3): 395-406.
|
[10] |
LI C, ZHENG L, JIA N. Network-wide ride-sourcing passenger demand origin-destination matrix prediction with a generative adversarial network[J]. Transportmetrica A: Transport Science, 2022, 20(1): 1-28.
|
[11] |
YANG B, TIAN Y, WANG J, et al. How to improve urban transportation planning in big data era? A practice in the study of traffic analysis zone delineation[J]. Transport Policy, 2022, 127: 1-14. doi: 10.1016/j.tranpol.2022.08.002
|
[12] |
薛晴婉, 瞿麦青, 彭怀军, 等. 基于多目标蚁群算法的共享单车调度优化方法[J]. 交通信息与安全, 2024, 42(2): 124-135. doi: 10.3963/jssn.1674-4861.2024.02.013
XUE Q W, QU M Q, PENG H J, et al. A scheduling optimization method of shared bicycles based on a multi-objective ant colony algorithm[J]. Journal of Transport Information and Safety, 2024, 42(2): 124-135. (in Chinese) doi: 10.3963/jssn.1674-4861.2024.02.013
|
[13] |
LUO H, CAI J, ZHANG K, et al. A multi-task deep learning model for short-term taxi demand forecasting considering spatiotemporal dependences[J]. Journal of Traffic and Transportation Engineering(English Edition), 2021, 8(1): 83-94. doi: 10.1016/j.jtte.2019.07.002
|
[14] |
陈启香, 吕斌, 李显林. 站域建成环境对出租车-地铁组合出行的非线性影响[J]. 交通运输工程学报, 2024, 24(5): 285-300.
CHEN Q X, LYU B, LI X L. Nonlinear effect of station-area built environment on taxi-metro combined travel[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 285-300. (in Chinese)
|
[15] |
CESARIO E, UCHUBILO P I, VINCI A, et al. Multi-density urban hotspots detection in smart cities: a data-driven approach and experiments[J]. Pervasive and Mobile Computing, 2022, 86(1): 1-13.
|
[16] |
王梓蒙, 刘艳芳, 罗璇, 等. 基于多源数据的城市活力与建成环境非线性关系研究——以双休日武汉市主城区为例[J]. 地理科学进展, 2023, 42(4): 716-729. (in Chinese)
WANG Z M, LIU Y F, LUO X, et al. Nonlinear relationship between urban vitality and the built environment based on multi-source data: a case study of the main urban area of Wuhan city at the weekend[J]. Progress in Geography, 2023, 42(4): 716-729. (in Chinese)
|
[17] |
TANG J, HU J, WANG Y, et al. Estimating hotspots using a Gaussian mixture model from large-scale taxi GPS trace data[J]. Transportation Safety and Environment, 2019, 1(2): 145-153. doi: 10.1093/tse/tdz006
|
[18] |
ZHANG G, ZHU A X, HUANG Q. A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data[J]. International Journal of Geographical Information Science, 2017, 31(10): 2068-2097. doi: 10.1080/13658816.2017.1324975
|
[19] |
JAVANMARD R, LEE J, KIM J, et al. The impacts of the modifiable areal unit problem(MAUP)on social equity analysis of public transit reliability[J]. Journal of Transport Geography, 2023, 106(1): 1-13.
|
[20] |
刘瑜, 汪珂丽, 邢潇月, 等. 地理分析中的空间效应[J]. 地理学报, 2023, 78(3): 517-531.
LIU Y, WANG K L, XING X Y, et al. On spatial effects in geographical analysis[J]. Acta Geographica Sinica, 2023, 78(3): 517-531. (in Chinese)
|
[21] |
全威, 孙超. 基于热点探测的城市区域公交可达性研究[J]. 交通运输系统工程与信息, 2020, 20(2): 231-236.
QUAN W, SUN C. Bus accessibility in urban areas based on hot spot detection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 231-236. (in Chinese)
|
[22] |
YAN Y, QUAN W, WANG H. A data-driven adaptive geospatial hotspot detection approach in smart cities[J]. Transactions in GIS, 2024, 28(2): 303-325. doi: 10.1111/tgis.13137
|
[23] |
葛浩菁, 吕远, 焦朋朋. 基于信令数据的中型城市通勤公交站点优化方法[J]. 交通信息与安全, 2024, 42(1): 142-149. doi: 10.3963/jssn.1674-4861.2024.01.016
GE H J, LYU Y, JIAO P P. Deployment of bus stop for commuters in medium-sized cities based on signaling data[J]. Journal of Transport Information and Safety, 2024, 42(1): 142-149. (in Chinese) doi: 10.3963/jssn.1674-4861.2024.01.016
|