Citation: | ZHANG Tingrui, ZHANG Xuequan, YANG Zichuan, MA Wenshuo, LIU Bing. A Detection Method for Road Surface Pothole Based on Mobile-scanned Point Cloud Using Graph Neural Networks[J]. Journal of Transport Information and Safety, 2025, 43(2): 54-64. doi: 10.3963/j.jssn.1674-4861.2025.02.007 |
[1] |
OLIVEIRA H, CORREIA P L. Automatic road crack detection and characterization[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 14(1): 155-168.
|
[2] |
李海莲, 高雅丽, 江晶晶, 等. 基于NAR-ARIMA组合模型的高速公路沥青路面破损状况预测[J]. 大连理工大学学报, 2024, 64(3): 307-313.
LI H L, GAO Y L, JIANG J J, et al. Prediction of expressway asphalt pavement damage based on NAR-ARIMA combined model[J]. Journal of Dalian University of Technology, 2024, 64(3): 307-313. (in Chinese)
|
[3] |
中华人民共和国交通运输部. 公路技术状况评定标准: JTG 5210—2018[S]. 北京: 人民交通出版社, 2018.
Ministry of Transport, People's Republic of China. Highway performance assessment standards: JTG 5210—2018[S]. Beijing: China Commnications Press, 2018. (in Chinese)
|
[4] |
KARUKAYIL A, QUAIL C, CHEEIN F A. Deep learning enhanced feature extraction of potholes using vision and lidar data for road maintenance[J]. IEEE Access, 2024, 12: 184541-184549. doi: 10.1109/ACCESS.2024.3512783
|
[5] |
马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137.
MA J, ZHAO X M, HE S H, et al. Review of pavement detection techonology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese)
|
[6] |
DOSHI K, YILMAZ Y. Road damage detection using deep ensemble learning[C]. 2020 IEEE International Conference on Big Data, Amsterdam, Netherlands: IEEE, 2020.
|
[7] |
惠冰, 李远见. 基于改进U型神经网络的路面裂缝检测方法[J]. 交通信息与安全, 2023, 41(1): 105-114, 131. doi: 10.3963/j.jssn.1674-4861.2023.01.011
HUI B, LI Y J. A detection method for pavement cracks based on an improved u-shaped network. [J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114, 131. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.011
|
[8] |
SHIM S, KIM J, LEE S W, et al. Road damage detection using super-resolution and semi-supervised learning with generative adversarial network[J]. Automation in Construction, 2022, 135: 104139. doi: 10.1016/j.autcon.2022.104139
|
[9] |
MAEDA H, KASHIYAMA T, SEKIMOTO Y, et al. Generative adversarial network for road damage detection[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36 (1): 47-60. doi: 10.1111/mice.12561
|
[10] |
CHEN M, LIU R, YANG J, et al. Pavement damage identification method based on point cloud multi-source feature enhancement[J]. International Journal of Pavement Research and Technology, 2022, 15(2): 257-268. doi: 10.1007/s42947-021-00116-z
|
[11] |
HUYAN J, LI W, TIGHE S, et al. CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection[J]. Structural Control and Health Monitoring, 2020, 27(8): e2551.
|
[12] |
张大伟, 田抑阳, 徐培娟, 等. 基于E-HRNet的路面破损区域识别方法[J]. 北京交通大学学报, 2023, 47(4): 110-119.
ZHANG D W, TIAN Y Y, XU P J, et al. Road surface damage area identification method based on E-HRNet[J]. Journal of Beijing Jiaotong University, 2023, 47(4): 110-119. (in Chinese)
|
[13] |
张瑢, 彭勃, 朱宇, 等. 现代沥青路面抗滑检测方法综述[J]. 工程机械, 2024, 55(1): 159-164.
ZHANG R, PENG B, ZHU Y, et al. The summary of modern asphalt pavement skid resistance testing methods[J]. Construction Machinery and Equipment, 2024, 55(1): 159-164. (in Chinese)
|
[14] |
LUETZENBURG G, KROON A, BJØRK A A. Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences[J]. Scientific Reports, 2021, 11(1): 1-9. doi: 10.1038/s41598-020-79139-8
|
[15] |
MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141. doi: 10.1111/mice.12387
|
[16] |
乌日娜, 白云, 韩建峰. 基于深度学习的公路路面破损检测识别方法[J]. 计算机仿真, 2023, 40(1): 208-212.
WU R N, BAI Y, HAN J F. Detection and identification method of road surface damage based on deep learning[J]. Computer Simulation, 2023, 40(1): 208-212. (in Chinese)
|
[17] |
李娇娇, 孙红岩, 董雨, 等. 基于深度学习的3维点云处理综述[J]. 计算机研究与发展, 2022, 59(5): 1160-1179.
LI J J, SUN H Y, DONG Yu, et al. Survey of 3-dimensional point cloud processing based on deep learning[J]. Journal of Computer Research and Development, 2022, 59(5): 1160-1179. (in Chinese)
|
[18] |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE/ CVF Conference on Computer Vision and Pattern Recognition(CVPR), Hawaii, USA: IEEE, 2017.
|
[19] |
CHAITHAVEE S, CHAYAKUL T. Classification of 3D point cloud data from mobile mapping system for detecting road surfaces and potholes using convolution neural networks[J]. International Journal of Geoinformatics, 2022, 18 (6): 11-23.
|
[20] |
CHARLES R, LI Y, HAO S, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[C]. Advances in Neural Information Processing Systems, Long Beach, USA: NIPS, 2017.
|
[21] |
QIAN G, LI Y, PENG H, et al. Pointnext: revisiting pointnet++ with improved training and scaling strategies[J]. Advances in Neural Information Processing Systems, 2022, 35: 23192-23204.
|
[22] |
MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[C]. International Conference on Learning Representations, Virtual: ICLR, 2022.
|
[23] |
WANG Y, SUN Y, LIU Z, et al. Dynamic graph cnn for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
|
[24] |
PHAN A V, LE NGUYEN M, NGUYEN Y L H, et al. Dgcnn: a convolutional neural network over large-scale labeled graphs[J]. Neural Networks, 2018, 108: 533-543. doi: 10.1016/j.neunet.2018.09.001
|
[25] |
SUN J, ZHANG Q, KAILKHURA B, et al. Modelnet40-c: a robustness benchmark for 3D point cloud recognition under corruption[C]. International Conference on Learning Representations, Virtual: ICLR, 2022.
|
[26] |
ZHANG K, HAO M, WANG J, et al. Linked dynamic graph cnn: learning through point cloud by linking hierarchical features[C]. 27th International Conference on Mechatronics and Machine Vision in Practice(CVPR), Shanghai, China: IEEE, 2021.
|
[27] |
LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3664-3680.
|
[28] |
WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
|