Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
WANG Xinglong, LI Guoxiang, ZHANG Zhao, YE Ke, SU Ting, GE Jing. A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU[J]. Journal of Transport Information and Safety, 2025, 43(2): 44-53. doi: 10.3963/j.jssn.1674-4861.2025.02.006
Citation: WANG Xinglong, LI Guoxiang, ZHANG Zhao, YE Ke, SU Ting, GE Jing. A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU[J]. Journal of Transport Information and Safety, 2025, 43(2): 44-53. doi: 10.3963/j.jssn.1674-4861.2025.02.006

A Model for Aircraft Surface Taxiing Trajectory Prediction Base on Transformer-TCN-GRU

doi: 10.3963/j.jssn.1674-4861.2025.02.006
  • Received Date: 2024-11-05
    Available Online: 2025-09-29
  • For aircraft taxiing trajectory prediction, existing methods exhibit low accuracy in real-time estimation of future positions over medium-term time horizons. To enhance prediction precision within this temporal scope while maintaining computational efficiency, this study proposes a taxiing trajectory prediction model integrating transformer networks, cross-attention mechanisms, temporal convolutional networks (TCN), and gated recurrent units (GRU) to generate multiple candidate trajectories. The Transformer encoder captures temporal dependencies and motion patterns from historical trajectory data to derive global feature representations. Airport vector maps and taxiing route instructions from air traffic control systems are utilized to compute planned future taxiing path coordinates. A cross-attention mechanism then aligns the global trajectory features (as Query) with critical positions in the planned path sequence, mapping the fused path-enhanced features into multimodal representations corresponding to candidate trajectories. The TCN-GRU decoder processes each modality to capture long-term temporal dependencies and outputs multiple predicted trajectories with associated probabilities. Validation on real taxiing trajectories from a major Chinese airport demonstrates minimum average displacement error (minADE) of 1.932 m and minimum final displacement error (minFDE) of 1.811 m for 8-second predictions. Compared to individual GRU and TCN models, the proposed approach reduces minADE/minFDE by 14.10%/30.88% and 16.62%/34.72% respectively, while maintain an average runtime of 17.70 milliseconds per sample. The proposed method achieves accurate and efficient trajectory prediction, supporting enhanced safety management in airport maneuvering areas.

     

  • loading
  • [1]
    廖超伟. 航空器跑道滑行轨迹预测方法研究[J]. 舰船电子工程, 2015, 35(8): 127-129, 166.

    LIAO C W. Prediction method of aircraft runway slide trajectory[J]. Ship Electronic Engineering, 2015, 35 (8) : 127-129, 166. (in Chinese)
    [2]
    周龙. 基于4D轨迹的航空器地面滑行动态路径规划及仿真系统研究[D]. 南京: 南京航空航天大学, 2015.

    ZHOU L. Research on system of dynamic route planning and simulation for taxiing aircraft based on 4D trajectory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [3]
    ZHANG X, YU W. Research on the application of kalman filter algorithm in aircraft trajectory analysis[C]. IEEE 7th International Conference on Intelligent Computing and Signal Processing, Xi'an: IEEE, 2022.
    [4]
    吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(增刊1): 277-282.

    LYU B, WANG C. Application of improved extended kalman filtering in aircraft 4D trajectory prediction algorithm[J]. Journal of Computer Applications, 2021, 41(S1): 277-282. (in Chinese)
    [5]
    陈明强, 傅嘉赟. 基于无迹卡尔曼滤波的飞行航迹预测方法研究[J]. 计算机仿真, 2021, 38(6): 27-30, 36.

    CHENG M Q, FU J Y. Flight track prediction method based on unscented kalman filter[J]. Computer Simulation, 2021, 38 (6): 27-30, 36. (in Chinese)
    [6]
    王新, 杨任农, 左家亮, 等. 基于HPSO-TPFENN的目标机轨迹预测[J]. 西北工业大学学报, 2019, 37(3): 612-620.

    WANG X, YANG R N, ZUO J L, et al. Trajectory prediction of target aircraft based on HPSO-TPFENN neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 612-620. (in Chinese)
    [7]
    MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectoryprediction[J]. IEEEAccess, 2020, (8): 134668-134680.
    [8]
    SHI Z Y, XU M, PAN Q. 4-D flight trajectory prediction with constrained LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 7242-7255.
    [9]
    ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, (8): 151250-151266.
    [10]
    MA Z M, YAO M F, HONG T, et al. Aircraft surface trajectory prediction method based on LSTM with attenuated memory window[J]. Journal of Physics: Conference Series, 2019, 1215(1): 012003. doi: 10.1088/1742-6596/1215/1/012003
    [11]
    杨春伟, 刘炳琪, 王继平, 等. 基于注意力机制的高超声速飞行器LSTM智能轨迹预测[J]. 兵工学报, 2022, 43(增刊2): 78-86.

    YANG C W, LIU B Q, WANG J P, et al. LSTM intelligent trajectory prediction for hypersonic vehicles based on attention mechanism[J]. Acta Armamentarii, 2022, 43(S2): 78-86. (in Chinese)
    [12]
    ZHANG X G, ZHONG S Q, MAHADEVAN S. Airport surface movement prediction and safety assessment with spa-tial-temporal graph convolutional neural network[J]. Transportation Research Part C: Emerging Technologies, 2022, 144: 103873. doi: 10.1016/j.trc.2022.103873
    [13]
    刘雨生, 汤新民, 任宣铭. 基于注意力机制的GRU-IKF场面滑行轨迹预测模型[J]. 北京航空航天大学学报, 2025, 51 (3): 1028-1036.

    LIU Y S, TANG X M, REN X M. Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 1028-1036. (in Chinese)
    [14]
    王兴隆, 许晏丰. 基于AM-LSTM的飞行区航空器滑行轨迹预测与冲突识别[J]. 中国安全科学学报, 2024, 34(1): 116-124.

    WANG X L, XU Y F. Aircraft taxiing trajectory prediction and conflict risk identification in airfield area based on AM-LSTM[J]. China Safety Science Journal, 2024, 34(1): 116-124. (in Chinese)
    [15]
    殷萌暄, 胡明华, 尹嘉男, 等. 基于多元嵌入特征的航空器场面滑行轨迹预测[J]. 航空计算技术, 2024, 54(5): 58-63.

    YIN M X, HU M H, YIN J N, et al. Aircraft taxiing trajectory prediction based on multi-embedding features[J]. Aeronautical Computing Technique, 2024, 54(5): 58-63. (in Chinese)
    [16]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06)[2024-11-04]. https://arxiv.org/abs/2010.11929.
    [17]
    中国民用航空局. 民用机场飞行区技术标准: MH 5001-2021[S]. 北京: 中国民航出版社, 2021.

    Civil Aviation Administration of China. Technical standards for airfield area of civil airports: MH 5001-2021[S]. Beijing: China Civil Aviation Publishing House, 2021. (in Chinese)
    [18]
    ZHOU Z K, YE L Y, WANG J P, et al. Hivt: hierarchical vector transformer for multi-agent motion prediction[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA: IEEE, 2022.
    [19]
    GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]. International Conference on Machine Learning, Sydney, Australia: PMLR, 2017.
    [20]
    BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04)[2024-11-04]. https://arxiv.org/abs/1803.01271
    [21]
    GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]. 25th International Conference on Pattern Recognition, Milan, Italy: IEEE, 2021.
    [22]
    KHANDELWAL S, QI W, SINGH J, et al. What-if motion prediction for autonomous driving[EB/OL]. (2020-08)[2024-11-04]. https://arxiv.org/abs/2008.10587.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (58) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return