Citation: | DONG Sheng, MA Yunjie, ZHOU Jibiao, DU Yunchao, LI Zewei. A Method of Risk Assessment for Subway Stations Based on D-S Evidence Theory[J]. Journal of Transport Information and Safety, 2025, 43(2): 28-35. doi: 10.3963/j.jssn.1674-4861.2025.02.004 |
[1] |
YN N, WANG Y, ZHOU Y, et al. Field study and analysis of passenger density in the beijing subway transfer hall[J]. Buildings, 2024, 14(8): 2504. doi: 10.3390/buildings14082504
|
[2] |
孙立山, 宫庆胜, 崔丽, 等. 高密度客流激波现象识别与分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(4): 94-99.
SUN L S, GONG Q S, CUI L, et al. Recognition and analysis of high density pedestrian shockwaves phenomenon[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(4): 94-99. (in Chinese)
|
[3] |
张矢宇, 杨云超, 杨宇昊. 考虑客流时变特性的列车时刻表优化方法[J]. 运筹与管理, 2023, 32(8): 44-50.
ZHANG S Y, YANG Y C, YANG Y H, et al. A train schedule optimization method considering the time-varying characteristics of passenger flow[J]. Operations Research and Management Science, 2019, 38(4): 94-99. (in Chinese)
|
[4] |
WANG T, SONG J, ZhANG J, et al. Short-term metro passenger flow prediction based on hybrid spatiotemporal extraction and multi-feature fusion[J]. Tunnelling and Underground Space Technology, 2025, 159: 106491. doi: 10.1016/j.tust.2025.106491
|
[5] |
SHANG P, LI R, GUO J, et al. Integrating lagrangian and eulerian observations for passenger flow state estimation in an urban rail transit network: a space-time-state hyper network-based assignment approach[J]. Transportation Research Part B: Methodological, 2019, 121: 135-167. doi: 10.1016/j.trb.2018.12.015
|
[6] |
FU X, ZUO Y, WU J, et al. Short-term prediction of metro passenger flow with multi-source data: a neural network model fusing spatial and temporal features[J]. Tunnelling and Underground Space Technology, 2022, 124: 104486. doi: 10.1016/j.tust.2022.104486
|
[7] |
王炜, 姚恩建, 张子龙, 等. 城市轨道交通车站客流风险评估研究[J]. 中国铁路, 2025(1): 109-114.
WANG W, YAO E J, ZHANG Z L, et al. Research on assessment of passenger flow risks in urban rail transit stations[J]. China Railway, 2025(1): 109-114. (in Chinese)
|
[8] |
FENG J, LI X, MAO B, et al. Weighted complex network analysis of the beijing subway system: train and passenger flows[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 474: 213-223. doi: 10.1016/j.physa.2017.01.085
|
[9] |
CORNET S, BUISSON C, RAMOND F, et al. Methods for quantitative assessment of passenger flow influence on train dwell time in dense traffic areas[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 345-359. doi: 10.1016/j.trc.2019.05.008
|
[10] |
马壮林, 程会媛, 邵逸恒, 等. 大客流干扰下多层公交-地铁网络的韧性评估[J]. 中国公路学报, 2024, 37(6): 267-278.
MA Z L, CHENG H Y, SHAO Y H, et al. Resilience assessment of multilayer bus-metro network under large passenger flow interference[J]. China Journal of Highway and Transport, 2024, 37(6): 267-278. (in Chinese)
|
[11] |
CHEN J, LIU C, MENG Y, et al. Multi-dimensional evacuation risk evaluation in standard subway station[J]. Safety Science, 2021, 142: 105392. doi: 10.1016/j.ssci.2021.105392
|
[12] |
GUO K, ZHANG L. Adaptive multi-objective optimization for emergency evacuation at metro stations[J]. Reliability Engineering & System Safety, 2022, 219: 108210.
|
[13] |
FENG J R, GAI W, YAN Y. Emergency evacuation risk assessment and mitigation strategy for a toxic gas leak in an underground space: the case of a subway station in guangzhou, china[J]. Safety Science, 2021, 134: 105039. doi: 10.1016/j.ssci.2020.105039
|
[14] |
许锡伟, 陈炜, 陈冠麟, 等. 数智化地铁安全应急保障系统建设研究[J]. 都市快轨交通, 2024, 37(2): 54-59.
XU X W, CHEN W, CHEN G L, et al. Construction of a digitized and intelligent subway safety emergency assurance system[J]. Urban Rapid Rail Transit, 2024, 37(2): 54-59. (in Chinese)
|
[15] |
何友, 刘瑜, 李耀文, 等. 多源信息融合发展及展望[J/ OL]. 航空学报, 1-27[2025-05-05].
HE Y, LIU Y, LI Y W, et al. Development and prospects of multisource information fusion[J]. Acta Aeronautica et Astronautica Sinica, 1-27[2025-05-05]. (in Chinese)
|
[16] |
TANG L, LU Z, FAN B. Energy efficient and reliable routing algorithm for wireless sensors networks[J]. Applied Sciences, 2020, 10(5): 1885. doi: 10.3390/app10051885
|
[17] |
LI S, LIU C, ZHOU Z, et al. Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence[J]. Tunnelling and Underground Space Technology, 2021, 113: 103948. doi: 10.1016/j.tust.2021.103948
|
[18] |
ZHANG W, ZHANGY, ZHANG C. Navigation risk assessment of intelligent ships based on ds-fuzzy weighted distance bayesian network[J]. Ocean Engineering, 2024, 313: 119452. doi: 10.1016/j.oceaneng.2024.119452
|
[19] |
邓勇, 施文康. 1种改进的证据推理组合规则[J]. 上海交通大学学报, 2003(8): 1275-1278.
DENG Y, SHI W K. A modified combination rule of evidence theory[J]. Journal of Shanghai Jiaotong University, 2003(8): 1275-1278. (in Chinese)
|
[20] |
汤青慧, 刘硕, 刘文杰. 基于改进变权物元可拓模型的地铁车站火灾安全韧性评价[J]. 安全与环境学报, 2024, 24 (4): 1346-1355.
TANG Q H, LIU S, LIU W J. Safety assessment of metro station operation based on improved extension and matter element method[J]. Urban Mass Transit, 2024, 24 (4) : 1346-1355. (in Chinese)
|
[21] |
汪益敏, 罗跃, 于恒, 等. 人员密集型地铁车站安全风险评价方法[J]. 交通运输工程学报, 2020, 20(5): 198-207.
WANG Y M, LUO Y, YU H, et al. Evaluation method of security risk on crowded metro station[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 198-207. (in Chinese)
|
[22] |
张继信, 黄东阳, 王东民, 等. 基于组合赋权和TOPSIS-GRA法的城市地铁车站应急疏散能力评价[J]. 铁道标准设计, 2024, 68(7): 178-184, 225.
ZHANG J X, HUANG D Y, WANG D M, et al. Evaluation of emergency evacuation capacity of urban subway stations based on combined weighting and topsis-gra method[J]. Railway Standard Design, 2024, 68(7): 178-184, 225. (in Chinese)
|
[23] |
徐东. 《地铁安全疏散规范》车站疏散适用性分析[J]. 都市快轨交通, 2019, 32(1): 142-149.
XU D. Applicability analysis of code for safety evacuation of metro on metro station evacuation[J]. Urban Rapid Rail Transit. 2019, 32(1): 142-149. (in Chinese)
|