Citation: | ZHI Jingwen, ZHANG Junfeng, MA Zao. Operational Risk Assessment of Terminal Airspace with Prevailing Traffic Flow[J]. Journal of Transport Information and Safety, 2025, 43(2): 11-18. doi: 10.3963/j.jssn.1674-4861.2025.02.002 |
[1] |
QU Y, HAN S. A method to calculate the collision risk on air-route[C]. International Conference on Management and Service Science, Wuhan, China: IEEE, 2010.
|
[2] |
AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
|
[3] |
刘章. 基于REICH模型的同高度交叉航路碰撞风险研究[J]. 深圳大学学报(理工版), 2020, 37(2): 136-142.
LIU Z. Collision risk of crossing airlines at the same altitude based on REICH model[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(2): 136-142. (in Chinese)
|
[4] |
王莉莉, 刘鑫宇. 基于自主改航的交叉航班流预先冲突解脱研究[J/OL]. 西南交通大学学报, 2024-03[2024-11-22].
WANG L L, LIU X Y. Research on cross-flight flow pre-conflict resolution based on auto-rerouting[J/OL]. Journal of Southwest Jiaoton University, 2024-03[2024-11-22].
|
[5] |
王莉莉, 阳杰. 基于速度随机分布的低空空域小型无人机碰撞风险评估模型[J]. 交通信息与安全, 2022, 40(4): 64-70. doi: 10.3963/j.jssn.1674-4861.2022.04.007
WANG L L, YANG J. A collision risk model for small UAVs based on velocity random distribution in low-altitude airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.007
|
[6] |
陈肯, 杨晓刚. 基于改进Event模型的航路垂直方向碰撞研究[J]. 航空计算技术, 2021, 51(5): 15-18.
CHEN K, YANG X G. Vertical collision research of air routes based on the improved event model[J]. Aeronautical Computing Technique, 2021, 51(5): 15-18. (in Chinese)
|
[7] |
MITICI M, BLOM H A P. Mathematical models for air traffic conflict and collision probability estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 1052-1068.
|
[8] |
PAIELLI R A, ERZBERGER H. Conflict probability estimation for free flight[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 588-596. doi: 10.2514/2.4081
|
[9] |
王世锦. 繁忙终端空域飞行冲突风险[J]. 南京航空航天大学学报, 2013, 45(4): 538-543.
WANG S J. Flight conflict risk in busy terminal aiespace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(4): 538-543. (in Chinese)
|
[10] |
FIGUET B, MONSTEIN R, WALTERT M, et al. Data-driven mid-air collision risk modelling using extreme-value theory[J]. Aerospace Science and Technology, 2023, 142: 108646. doi: 10.1016/j.ast.2023.108646
|
[11] |
KRAUTH T, MORIO J, OLIVE X, et al. Advanced collision risk estimation in terminal manoeuvring areas using a disentangled variational autoencoder for uncertainty quantification[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108137. doi: 10.1016/j.engappai.2024.108137
|
[12] |
BARRATT S T, KOCHENDERFER M J, BOYD S P. Learning probabilistic trajectory models of aircraft in terminal airspace from position data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3536-3545.
|
[13] |
ZHENG Y. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6 (3): 1-41.
|
[14] |
REHM F. Clustering of flight tracks[C]. AIAA Infotech@Aerospace (I@A) Conference, Georgia: AIAA, 2011.
|
[15] |
ZHAO L, SHI G, A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172(15): 456-467.
|
[16] |
GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (4): 1511-1524. doi: 10.1109/TITS.2011.2160628
|
[17] |
CHEN L, NG R. On the marriage of Lp-norms and edit distance[C]. 30th International Conference on Very Large Data Bases, Toronto: VLDB, 2004.
|
[18] |
HAN P, WANG W, SHI Q, et al. A combined online-learning model with K-means clustering and GRU neural networks for trajectory prediction[J]. Ad Hoc Networks, 2021, 117: 102476. doi: 10.1016/j.adhoc.2021.102476
|
[19] |
LANG A, ERICH S. BETULA: numerically stable CF-trees for BIRCH clustering[C]. International Conference on Similarity Search and Applications, Denmark: Springer, 2020.
|
[20] |
DENG D. DBSCAN clustering algorithm based on density[C]. 7th International Forum on Electrical Engineering and Automation, Hefei: IEEE, 2020.
|
[21] |
DENG Z, HU Y, ZHU M, et al. A scalable and fast OPTICS for clustering trajectory big data[J]. Cluster Computing, 2015, 18: 549-62. doi: 10.1007/s10586-014-0413-9
|
[22] |
MCLNNES L, HEALY J, ASTELS S. Hdbscan: Hierarchical density-based clustering[J]. The Journal of Open Source Software, 2017, 2(11): 205. doi: 10.21105/joss.00205
|
[23] |
戴福青, 李解. 基于PBN的中小机场终端区飞行程序优化研究[J]. 科学技术与工程, 2012, 12(34): 9270-9274, 9279.
DAI F Q, LI J. Flight procedure optimization in terminal area of small and medium-sized airport based on PBN[J]. Science Technology and Engineering, 2012, 12 (34) : 9270-9274, 9279. (in Chinese)
|
[24] |
白鹏, 陈霖峰, 王玺, 等. 基于点融合的进场程序优化与航空器排序研究[J]. 中国安全科学学报, 2021, 31(12): 45-52.
BAI P, CHEN L F, WANG X, et al. Research on arrival procedure optimization and aircraft sequencing based on point merging[J]. China Safety Science Journal, 2021, 31(12): 45-52. (in Chinese)
|