Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
FENG Xuejun, WANG Haipeng, WANG Huiru, ZHANG Yan, SHEN Jinxing. Assessment Method for the Construction Effect of Port Hybrid Renewable Energy Systems from a Near-Zero Carbon Perspective[J]. Journal of Transport Information and Safety, 2024, 42(5): 99-110. doi: 10.3963/j.jssn.1674-4861.2024.05.010
Citation: FENG Xuejun, WANG Haipeng, WANG Huiru, ZHANG Yan, SHEN Jinxing. Assessment Method for the Construction Effect of Port Hybrid Renewable Energy Systems from a Near-Zero Carbon Perspective[J]. Journal of Transport Information and Safety, 2024, 42(5): 99-110. doi: 10.3963/j.jssn.1674-4861.2024.05.010

Assessment Method for the Construction Effect of Port Hybrid Renewable Energy Systems from a Near-Zero Carbon Perspective

doi: 10.3963/j.jssn.1674-4861.2024.05.010
  • Received Date: 2023-12-19
    Available Online: 2025-01-22
  • Under the current requirements of near-zero carbon emission goals, ports, as crucial sea-land hubs, must actively assume responsibility for green and low-carbon development. By fully utilizing renewable energy sources, such as wind and solar power, and rationally allocating the scale of renewable energy systems, ports can maximize their energy self-sufficiency. Balancing economic feasibility and environmental sustainability to reasonably configure the scale of integrated renewable energy systems is crucial for the current stage of port development. To address this challenge, this paper employs HOMER Pro as the simulation tool for constructing a near-zero carbon hybrid renewable energy system for ports, including real-time assessments of power supply and consumption. An evaluation model is established using the entropy-weighted TOPSIS method, analyzing and comparing construction scenarios of hybrid renewable energy systems based on economic and environmental indicators. Taking J port, a typical port along the Yangtze River in Jiangsu province, as an example, this study uses field survey data on resource endowments such as wind speed, daily radiation flux, and ambient temperature to conduct simulation analysis via HOMER Pro. The study compares three distinct scenarios: a standalone photovoltaic system, a standalone wind turbine system, and a wind-solar hybrid system, to validate the feasibility of the model. The results indicate the following optimal configurations for J Port under a surplus electricity grid connection mode: 7.8 MW photovoltaic panels, five 3 MW wind turbines, and a hybrid configuration of 6.2 MW photovoltaic panels with fifteen 3 MW wind turbines. Results show that the photovoltaic system demonstrates limited emission reduction potential, replacing only 19% of the port's energy consumption and exhibiting a high dependence on the national power grid. In contrast, the standalone wind turbine system satisfies 40% of the port's energy demand, outperforming the photovoltaics in both economic and environmental aspects. The wind-solar hybrid system further enhances the environmental performance of the grid-connected system, supporting 70% of the port's energy demand and achieving a 65% reduction in carbon emissions.

     

  • loading
  • [1]
    方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(一)典型系统结构与关键问题[J]. 中国电机工程学报, 2023, 43(1): 114-135.

    FANG S H, ZHAO C H, DING Z H, et al. Port integrated energy systems toward carbon neutrality(part i)typical topology and key problems[J]. Proceedings of the CSEE, 2023, 43 (1): 114-135. (in Chinese)
    [2]
    夏云峰. 欧洲风能协会发布海上风电港口展望报告[J]. 风能, 2021(7): 46-50.

    XIA Y F. European wind energy association releases offshore wind port outlook report[J]. Wind Energy, 2021(7): 46-50. (in Chinese)
    [3]
    岳莹, 王智科. 分布式风电在绿色港口建设中的应用[J]. 港口科技, 2019(4): 33-38.

    YUE Y, WANG Z K. Application of distributed wind power in green port construction[J]. Port Technology, 2019(4): 33-38. (in Chinese)
    [4]
    LI Z, XU Y. Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes[J]. Applied Energy, 2018, 210: 974-986. doi: 10.1016/j.apenergy.2017.08.197
    [5]
    吴天林. 光伏发电系统在岸桥上的应用[J]. 港口科技, 2017, 142(12): 15-18.

    WU T L. Application of photovoltaic power generation system on quay crane[J]. Port Technology, 2017, 142(12): 15-18. (in Chinese)
    [6]
    李根龙, 刘加军, 李倩. 龙腾特钢探索"光伏+钢铁"减碳路径[N]. 中国冶金报, 2022-11-18(1).

    LI G L, LIU J J, LI Q, et al. Longteng special steel explores the "photovoltaic + steel" carbon reduction path[N]. China Metallurgical News, 2022-11-18(1). (in Chinese)
    [7]
    IRSHAD A S, SAMADI W K, FAZLI A M, et al. Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electri fi cation[J]. Energy, 2023, 282: 128823. doi: 10.1016/j.energy.2023.128823
    [8]
    赵艳梅. 风光互补发电的技术难点及发展趋势[J]. 中国高新科技, 2020(13): 77-78.

    ZHAO Y M. Technical difficulties and development trends of wind and solar hybrid power generation[J]. China High-Tech, 2020(13): 77-78. (in Chinese)
    [9]
    司玉鹏, 王荣杰, 张世奇, 等. 新形态船舶能源系统多能互补优化管理[J]. 哈尔滨工程大学学报, 2022, 43(7): 1051-1058.

    SI Y P, WANG R J, ZHANG S Q, et al. Multi-energy complementary optimal management for a new type of energy system for ships[J]. Journal of Harbin Engineering University, 2022, 43(7): 1051-1058. (in Chinese)
    [10]
    刘伟, 郭甲生, 唐喜庆, 等. 基于HOMER的智慧能源系统规划设计: 以高速公路收费站为例[J]. 浙江电力, 2019, 38(2): 40-43.

    LIU W, GUO J S, TANG X Q, et al. Planning and design of intelligent energy system based on homer: case study on highway toll gate[J]. Zhejiang Electric Power, 2019, 38(2): 40-43. (in Chinese)
    [11]
    XU D, LI C L, LEUNG J Y T, et al. Berth allocation with time-dependent physical limitations on vessels[J]. European Journal of Operational Research, 2012, 216(1): 47-56. doi: 10.1016/j.ejor.2011.07.012
    [12]
    李金泽, 刘培, 李政. 偏远地区离网混合可再生能源系统建模与优化[J]. 工程热物理学报, 2021, 42(5): 1113-1118.

    LI J Z, LIU P, LI Z. Modeling and optimization of off-grid hybrid renewable energy systems in remote areas[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1113-1118. (in Chinese)
    [13]
    李庆祥, 王妮妮. 开展"近零碳港口"建设的思考和分析[J]. 交通节能与环保, 2021, 17(5): 18-21.

    LI Q X, WANG N N. Thoughts and analysis on carrying out the construction of "near-zero carbon port"[J]. Transport Energy Conservation & Environmental Protection, 2021, 17 (5): 18-21(in Chinese)
    [14]
    蒋一鹏, 袁成清, 袁裕鹏, 等". 双碳"战略下中国港口与清洁能源融合发展路径探析[J]. 交通信息与安全, 2023, 41(2) 139-146.

    JIANG Y P, YUAN C Q, YUAN Y P, et al. Pathway for integrated development of port and clean energy under strategy of carbon peaking and carbon neutralization in China[J]. Journal of Transport Information and Safety, 2023, 41(2): 139-146. (in Chinese)
    [15]
    HOSSAIN E, FARUQUE H, SUNNY M, et al. A Comprehensive review on energy storage systems: types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects[J]. Energies, 2020, 13(14): 3651.
    [16]
    RAMESH M, SAINI R P. Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India[J]. Journal of Cleaner Production, 2020, 259: 120697.
    [17]
    SAIPRASAD N, KALAM A, ZAYEGH A, et al. Comparative study of optimization of HRES using HOMER and iHOGA Software[J]. Journal of Scientific & Industrial Research, 2018, 77(12): 677-683.
    [18]
    MIAO C, TENG K, WANG Y, et al. Technoeconomic analysis on a hybrid power system for the UK household using renewable energy: a case study[J]. Energies, 2020, 13(12): 3231.
    [19]
    李建霞, 赵峰, 高锋阳. 基于HOMER和禁忌算法的高速公路光储充一体化电站容量优化[J]. 电源学报, 2022, 20(6): 127-136.

    LI J X, ZHAO F, GAO F Y. Hierarchical optimization for capacity of pv-integrated ev charging station on expressway based on homeR and Tabu algorithm[J]. Journal of Power Supply, 2022, 20(6): 127-136. (in Chinese)
    [20]
    OLATOMIWA L, MEKHILEF S, ISMAIL M S, et al. Energy management strategies in hybrid renewable energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 821-835.
    [21]
    DUFfiE J A, BECKMAN W A. Solar engineering of thermal processes[M]. New York: Wiley, 1991.
    [22]
    李军, 游松财, 黄敬峰. 基于GIS的中国陆地表面粗糙度长度的空间分布[J]. 上海交通大学学报(农业科学版), 2006 (2): 185-189.

    LI J, YOU C S, HUANG J F. Spatial distribution of ground roughness length based on GIS in China[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2006(2): 185-189. (in Chinese)
    [23]
    杨茂, 杨琼琼. 风电机组风速-功率特性曲线建模研究综述[J]. 电力自动化设备, 2018, 38(2): 34-43.

    YANG M, YANG Q Q. A review of research on wind speed-power characteristic curve modeling of wind turbines[J]. Electric Power Automation Equipment, 2018, 38 (2): 34-43. (in Chinese)
    [24]
    王慧茹, 封学军, 沈金星, 等. 基于SVR的江苏省交通运输业碳排放达峰预测[J]. 环境科技, 2022, 35(3): 58-63.

    WANG H R, FENG X J, SHEN J X, et al. Prediction on peak value of carbon emission from the Jiangsu transportation industry based on SVR model[J]. Environmental Science and Technology, 2022, 35(3): 58-63. (in Chinese)
    [25]
    王东兴, 王哲, 赵帆, 等. 氢燃料电池动力船舶技术标准现状分析与发展展望[J]. 交通信息与安全, 2023, 41(2): 157-167, 178. doi: 10.3963/j.jssn.1674-4861.2023.02.017

    WANG D X, WANG Z, ZHAO F, et al. State-of-the-art and prospect of technical standards for the ships powered by hydrogen fuel cells[J]. Journal of Transport Information and Safety, 2023, 41(2): 157-167, 178. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.017
    [26]
    WEI Y M, CHEN K, KANG J N, et al. Policy and management of carbon peaking and carbon neutrality: a literature review[J]. Engineering, 2022, 14: 52-63.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(9)

    Article Metrics

    Article views (87) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return