Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
KE Ji, YE Pei, WANG Haiyang, LIU Zhuangzhuang, JIANG Wei, WANG Biao. Flexible Optimal Scheduling of Transportation Energy Self-consumption System for Highway Service Area Based on Load Classification and Degradation Costs of Storage Batteries[J]. Journal of Transport Information and Safety, 2024, 42(5): 72-82. doi: 10.3963/j.jssn.1674-4861.2024.05.008
Citation: KE Ji, YE Pei, WANG Haiyang, LIU Zhuangzhuang, JIANG Wei, WANG Biao. Flexible Optimal Scheduling of Transportation Energy Self-consumption System for Highway Service Area Based on Load Classification and Degradation Costs of Storage Batteries[J]. Journal of Transport Information and Safety, 2024, 42(5): 72-82. doi: 10.3963/j.jssn.1674-4861.2024.05.008

Flexible Optimal Scheduling of Transportation Energy Self-consumption System for Highway Service Area Based on Load Classification and Degradation Costs of Storage Batteries

doi: 10.3963/j.jssn.1674-4861.2024.05.008
  • Received Date: 2024-01-31
    Available Online: 2025-01-22
  • For the optimal operation of the transportation energy self-consumption system in highway service areas, a transportation energy self-consumption system optimal scheduling model with careful consideration of load classification and energy storage degradation cost is proposed. First, the system load is graded according to the load classification principle; the influencing factors of the life degradation of storage batteries are analyzed, and the whole-life storage degradation costs are modeled; a comprehensive cost function including the system power purchase costs, photovoltaic operation, and maintenance costs, storage batteries operation costs, load scheduling compensation costs, carbon trading costs, and storage degradation costs is formed, and the minimum of which is used as the objective function, and based on the controllable flexible characteristics of the classification loads to establish its flexiable optimal scheduling model with relevant constraints. Finally, a multi-scenario simulation is conducted to compare and analyze the traffic energy self-consideration system for the Xinjiang Kelameili highway service area, considering the storage degradation costs and the controllable load classification factors. The results show that the proposed optimization model can effectively alleviate the power consumption pressure of the microgrid system in the highway service area and improve the service life of the energy storage battery; the peak-to-valley load difference of the system can be reduced by 17.11% through the flexible regulation of the controllable load classification, and the total cost of the system can be reduced by 7.67% compared with the total cost of the nominal system.

     

  • loading
  • [1]
    国家统计局. 中国统计年鉴—2022[M]. 北京: 中国统计出版社, 2022.

    National Bureau of Statistics of China. China statistical yearbook-2022[M]. Beijing: China Statistics Press, 2022. (in Chinese)
    [2]
    李晓易, 谭晓雨, 吴睿, 等. 交通运输领域碳达峰碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 15-21.

    LI X Y, TAN X Y, WU R, et al. Paths for carbon peak and carbon neutrality in transport sector in China[J]. Strategic Study of CAE, 2021, 23(6): 15-21. (in Chinese)
    [3]
    贾利民, 师瑞峰, 吉莉等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.

    JIA L M, SHI R F, JI L, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(0): 163-172. (in Chinese)
    [4]
    徐春梅, 张逸飞, 刘苏瑶, 等. 轨道交通能源自洽系统方案设计与配置优化[J]. 交通运输工程学报, 2024, 24(4): 43-55.

    XU C M, ZHANG Y F, LIU S Y, et al. Scheme design and configuration optimization of self-consistency energy systems for rail transit[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 43-55. (in Chinese)
    [5]
    黄虹鑫, 胡力群, 张懿璞, 等. 不同运行模式下的交通自洽能源系统架构配置优化[J/OL]. (2024-08-19)[2024-08-30]. http://kns.cnki.net/kcms/detail/61.1369.U.20240819.1143.002.html.

    HUANG H X, HU L Q, ZHANG Y P, et al. Configuration optimization for transportation self-consistent energy system architectures under different operation modes[J/OL]. (2024-08-19)[2024-08-30]. http://kns.cnki.net/kcms/detail/61.1369.U.20240819.1143.002.html.
    [6]
    王飚, 赵微微, 林少军, 等. 基于改进的多目标量子遗传算法的高速公路服务区综合能源管理[J]. 电网技术, 2022, 46(5): 80 1742-1751.

    WANG B, ZHAO W W, LIN S J, et al. Integrated energy management of highway service area based on improved multi-objective quantum genetic algorithm[J]. Power System Technology, 2022, 46(5): 1742-1751. (in Chinese)
    [7]
    李艳波, 李若尘, 史博, 等. 基于改进模拟退火遗传算法的高速公路服务区自洽能源系统高能效优化[J]. 西安交通大学学报, 2024, 58(1): 197-207, 216.

    LI Y B, LI R C, SHI B, et al. Optimization of high energy efficiency for self-consistent energy system in highway service area via simulated annealing algorithm-genetic algorithm[J]. Journal of Xi'an Jiaotong University, 2024, 58 (1) : 197-207, 216. (in Chinese)
    [8]
    王宁玲, 窦潇潇, 李承周, 等. 含P2G和复合储能的高速公路服务区综合能源系统日前优化调度[J]. 华北电力大学学报(自然科学版), 2024, 51(2): 53-61, 69.

    WANG N L, DOU X X, LI C Z, et al. Day-ahead optimization of integrated energy system in highway service area with P2G and composite energy storage[J]. Journal of North China Electric Power University, 2024, 51(2): 53-61, 69. (in Chinese)
    [9]
    李杰, 高爽, 袁博兴, 等. 采用融合遗传算法的高速公路服务区综合能源系统优化调度研究[J]. 西安交通大学学报, 2024, 58(5): 200-211.

    LI J, GAO S, YUAN B X, et al. Research on optimal scheduling of integrated energy system in highway service area based on a genetic algorithm-sequential quadratic programming algorithm[J]. Journal of Xi'an Jiaotong University, 2024, 58(5): 200-211. (in Chinese)
    [10]
    陈艳波, 田昊欣, 刘宇翔, 等. 计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J/OL]. (2023-11-20)[2024-03-16]. https://doi.org/10.13334/j.0258-8013.pcsee.231850.

    CHEN Y B, TIAN H X, LIU Y X, et al. Robust optimization configuration of photovoltaic-energy storage-charging integrated system in express way service are a considering demand response of electric vehicles[J/OL]. (2023-11-20)[2024-03-16]. https://doi.org/10.13334/j.0258-8013.pcsee.231850.(in Chinese)
    [11]
    王飚, 路捷, 沙爱民, 等. 考虑光伏不确定性影响的高速公路光储换一体化能源管理策略[J]. 交通运输工程学报, 2024, 24(4): 14-30.

    WANG B, LU J, SHA A M, et al. Energy management strategy of integrated photovoltaic storage swapping on highways considering influence of photovoltaic uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 14-30. (in Chinese)
    [12]
    柯吉, 王海洋, 路捷, 等. 考虑故障变化的高速公路配电网雪灾后低碳恢复策略[J]. 长安大学学报(自然科学版), 2024, 44(5): 114-125.

    KE J, WANG H Y, LU J, et al. Highway distribution network for post-disaster low carbon recovery considering fault variations[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(5): 114-125. (in Chinese)
    [13]
    李东东, 刘洋, 林顺富, 等. 典型居民温控负荷建模及聚合特性研究[J]. 电测与仪表, 2017, 54(16): 56-62.

    LI D D, LIU Y, LIN S F, et al. The study on the modeling and the aggregation characteristics of typical residential thermostatically-controlled load[J]. Electrical Measurement & Instrumentation, 2017, 54(16): 56-62. (in Chinese)
    [14]
    姜婷玉, 李亚平, 江叶峰, 等. 温控负荷提供电力系统辅助服务的关键技术综述[J]. 电力系统自动化, 2022, 46(11): 191-207.

    JIANG T Y, LI Y P, JIANG Y F, et al. Review on key technologies for providing auxiliary services to power system by thermostatically controlled loads[J]. Automation of Electric Power Systems, 2022, 46(11): 191-207. (in Chinese)
    [15]
    丛振兴. 温控负荷聚合参与电力系统频率调节控制策略研究[D]. 南宁: 广西大学, 2021.

    CONG Z X. Research on the control strategy of thermostatically controlled load aggregation participating in power system frequency regulation[D]. Nanning: Guangxi University, 2021. (in Chinese)
    [16]
    黄鸣宇, 张庆平, 张沈习, 等. 高比例清洁能源接入下计及需求响应的配电网重构[J]. 能源自洽系统保护与控制, 2022, 50(1): 116-123.

    HUANG M Y, ZHANG Q P, ZHANG S X, et al. Distribution network reconfiguration considering demand-side response with high penetration of clean energy[J]. Power System Protection and Control, 2022, 50(1): 116-123. (in Chinese)
    [17]
    周俊宇, 李伟, 花洁等. 考虑需求侧可控负荷的含储能社区综合能源系统优化调度[J]. 电力科学与技术学报, 2023, 38(2): 114-123.

    ZHOU J Y, Li W, HUA J, et al. Optimal dispatch of community integrated energy system with energy storage considering demand-side controllable load[J]. Journal of Electric Power Science and Technology, 2023, 38(2): 114-123. (in Chinese)
    [18]
    李兴国, 任永峰, 孟庆天, 等. 考虑可控负荷的含CSP和P2G的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(12): 552-559.

    LI X G, REN Y F, MENG Q T, et al. Optimal scheduling of integrated energy system with CSP and P2G considering controllable load[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 552-559. (in Chinese)
    [19]
    张一, 李文杰, 吴魁, 等. 含多可控资源的低碳园区自动需求响应优化方法[J]. 广东电力, 2023, 36(11): 11-19.

    ZHANG Y, LI W J, WU K, et al. Automatic demand response optimization method for low-carbon parks with multi-controllable resources[J]. Guangdong Electric Power, 2023, 36(11): 11-19. (in Chinese)
    [20]
    张俊成, 黎敏, 刘志文, 等. 基于改进交替方向乘子法的配电网柔性负荷分层集群调控方法[J]. 中国电力, 2024, 57(1): 140-147.

    ZHANG J C, LI M, LIU Z W, et al. Hierarchical cluster control method for flexible load in distribution network based on improved alternating direction multiplier method[J]. Electric Power, 2024, 57(1): 140-147. (in Chinese)
    [21]
    CHEN M Z, LU H, CHANG X Q, et al. An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load[J]. Energy, 2023, 273: 127203. doi: 10.1016/j.energy.2023.127203
    [22]
    杨晓辉, 袁志鑫, 肖锦扬, 等. 考虑电池寿命的混合储能微电网优化配置[J]. 能源自洽系统保护与控制, 2023, 51(4): 22-31.

    YANG X H, YUAN Z X, XIAO J Y, et al. Optimal configuration of hybrid energy storage microgrid considering battery life[J]. Power System Protection and Control, 2023, 51(4): 22-31. (in Chinese)
    [23]
    袁志鑫. 基于蓄电池和抽水蓄能的混合储能微电网优化配置研究[D]. 南昌: 南昌大学, 2023.

    YUAN Z X. Research on optimal configuration of hybrid energy storage microgrid based on battery and pumped storage[D]. Nanchang: Nanchang University, 2023. (in Chinese)
    [24]
    郭明萱, 穆云飞, 肖迁, 等. 考虑电池寿命损耗的园区综合能源电/热混合储能优化配置[J]. 能源自洽系统自动化, 2021, 45(13): 66-75.

    GUO M X, MU Y F, XIAO Q, et al. Optimal configuration of electric/thermal hybrid energy storage for park-level integrated energy system considering battery life loss[J]. Automation of Electric Power Systems, 2021, 45(13): 66-75. (in Chinese)
    [25]
    张莲, 赵梦琪, 廖宗毅, 等. 计及多因素聚合储能寿命的微电网容量优化配置[J]. 重庆理工大学学报(自然科学), 2023, 37(1): 196-203.

    ZHANG L, ZHAO M Q, LIAO Z Y, et al. Optimal configuration of microgrid capacity for multi-factor polymerized energy storage life[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(1): 196-203. (in Chinese)
    [26]
    MOSTAF H, MOSTAFAA, SHADY H, et al. Techno-economic assessment of energy storage systems using annualized life cycle cost of storage(LCCOS)and levelized cost of energy (LCOE) metrics[J]. The Journal of Energy Storage, 2020, 29: 101345. doi: 10.1016/j.est.2020.101345
    [27]
    赵伟, 袁锡莲, 周宜行, 等. 考虑运行寿命内经济性最优的梯次电池储能系统容量配置方法[J]. 能源自洽系统保护与控制, 2021, 49(12): 16-24.

    ZHAO W, YUAN X L, ZHOU Y X, et al. Capacity configuration method of a second-use battery energy storage system considering economic optimization within service life[J]. Power System Protection and Control, 2021, 49(12): 16-24. (in Chinese)
    [28]
    王圆圆, 华远鹏, 王世谦, 等. 大数据驱动的电动汽车动力电池老化状态评价方法[J]. 交通信息与安全, 2022, 40(6): 157-164.

    WANG Y Y, YUAN H P, WANG S Q, et al. A data-driven battery aging estimation method for power batteries in electric vehicles[J]. Journal of Transport Information and Safety, 2022, 40(6): 157-164. (in Chinese)
    [29]
    马海勃. 高可再生能源渗透率下微电网的能量管理优化策略研究[D]. 广州: 广东工业大学, 2020.

    Ma H B. Research on energy management optimization strategy for microgrids with high-penetration renewables[D]. Guangzhou: Guangdong University of Technology, 2020. (in Chinese)
    [30]
    徐昕. 考虑机组磨损与储能寿命退化的火—储联合调频策略与经济性研究[D]. 武汉: 华中科技大学, 2022.

    XU X. Research on joint frequency regulation strategy and its economic analysis for thermal generation units and battery systems considering unit wearing and storage life degradation[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese)
    [31]
    宋绍鑫. 基于碳交易机制和需求响应的综合能源系统优化调度研究[D]. 阜新: 辽宁工程技术大学, 2022.

    SONG S X. Research on optimal scheduling of integrated energy system based on carbon trading mechanism and demand response[D]. Fuxin: Liaoning Technical University, 2022. (in Chinese)
    [32]
    王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39(6): 1614-1626, 1858.

    WANG Z S, SHI Y, TANG Y M et al. Low carbon economy operation and energy efficiency analysis of integrated energy systems considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(6): 1614-1626, 1858. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (37) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return