Volume 41 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
YANG Wei, TAN Liang, DU Yafeng, SUN Xue, ZHANG Yujie. Path Tracking and Lateral Stability Control for Distributed Drive Vehicles with Low Adhesion[J]. Journal of Transport Information and Safety, 2023, 41(6): 61-70. doi: 10.3963/j.jssn.1674-4861.2023.06.007
Citation: YANG Wei, TAN Liang, DU Yafeng, SUN Xue, ZHANG Yujie. Path Tracking and Lateral Stability Control for Distributed Drive Vehicles with Low Adhesion[J]. Journal of Transport Information and Safety, 2023, 41(6): 61-70. doi: 10.3963/j.jssn.1674-4861.2023.06.007

Path Tracking and Lateral Stability Control for Distributed Drive Vehicles with Low Adhesion

doi: 10.3963/j.jssn.1674-4861.2023.06.007
  • Received Date: 2023-05-09
    Available Online: 2024-04-03
  • Due to the coupling relationship between tracking and lateral stability of vehicles under low adhesion conditions (such as snow and moisture), it is difficult to control both tracking accuracy and good stability simultaneously. Therefore, a joint control model of path tracking and lateral stability is proposed based on distributed independent drive electric vehicle platform. The transverse and longitudinal decoupling control is adopted for the path tracking problem. Besides, the model predictive control (MPC) method based on Frenet coordinate system is adopted for the horizontal tracking control problem, and angle compensation strategy is introduced to improve the accuracy of path tracking. For the longitudinal speed control problem, the model uses MPC to solve the expected acceleration, and determines the motor torque output according to the driving balance equation and the maximum utilization rate of road adhesion, so as to achieve the longitudinal speed control. For lateral stability control, a yaw torque control model based on stability augmentation system (STA) is proposed. After additional torque is obtained, it is effectively distributed to each wheel by quadratic programming method, thus enhancing the lateral stability of the vehicle. Moreover, the CarSim/Simulink co-simulation platform is used to simulate and verify the double-shift road conditions. The results show that under the condition of snow-covered pavement, the maximum lateral deflection angle of the improved model is reduced by 83.1% compared with the traditional MPC under the condition that the lateral error is close. Under wet road conditions, the maximum lateral error and the maximum lateral deflection angle of the improved model are reduced by 52.2% and 83.3%, respectively, compared with the traditional MPC model. Compared with the traditional synovial model, this model can effectively suppress the oscillation phenomenon when the tracking error and the side deflection angle of the center of mass are dominant. Through the joint control, the stability and safety of the vehicle on the low adhesion road surface can be enhanced.

     

  • loading
  • [1]
    熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56: 127-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm

    XIONG L, YANG X, ZHUO G R, et al. Overview of the development status of motion control for autonomous vehicles[J]. Journal of Mechanical Engineering, 2020, 56: 127-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm
    [2]
    陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38: 1203-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201706021.htm

    CHEN H Y, CHEN S P, GONG J W. Overview of horizontal control methods for intelligent vehicles[J]. Acta Ordnance Engineering, 2017, 38: 1203-1214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201706021.htm
    [3]
    潘洺铭, 孙宇波, 刘强. 智能汽车对无信号交叉口行人的避撞控制[J]. 交通信息与安全, 2021, 39(2): 19-27. doi: 10.3963/j.jssn.1674-4861.2021.02.003

    PAN M M, SUN Y B, LIU Q. Collision avoidance control by intelligent vehicle for pedestrians at unsignaled intersection[J]. Journal of Transport Information and Safety, 2021, 39 (2): 19-27. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.003
    [4]
    段敏, 孙小松, 张博涵. 基于模型预测控制与离散线性二次型调节器的智能车横纵解耦跟踪控制[J]. 汽车技术, 2022, (8): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202208005.htm

    DUAN M, SUN X S, ZHANG B H. Horizontal and longitudinal decoupling tracking control of intelligent vehicle based on model predictive control and discrete linear quadratic regulator[J]. Automotive Technology, 2022, 563(8): 38-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202208005.htm
    [5]
    高琳琳, 唐风敏, 郭蓬, 等. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40: 435-441. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202103018.htm

    GAO L L, TANG F M, GUO P, et al. Research on improved LQR method for lateral motion control of automatic driving[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40: 435-441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202103018.htm
    [6]
    BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice, 2017, 61: 307-316. doi: 10.1016/j.conengprac.2016.04.013
    [7]
    石贞洪, 江洪, 于文浩, 等. 适用于路径跟踪控制的自适应MPC算法研究[J]. 计算机工程与应用, 2020, 56: 266-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202021041.htm

    SHI Z H, JIANG H, YU W H, et al. Research on adaptive MPC algorithm for path tracking control[J]. Computer Engineering and Applications, 2020, 56: 266-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202021041.htm
    [8]
    SONG X, SHAO Y, QU Z. A vehicle trajectory tracking method with a time-varying model based on the model predictive control[J]. IEEE Access, 2019(8): 16573-16583.
    [9]
    TAHERIAN S, HALDER K, DIXIT S, et al. Autonomous collision avoidance using MPC with LQR-based weight transformation[J]. Sensors, 2021, 21(13): 4296. doi: 10.3390/s21134296
    [10]
    CHANG X, ZHANG H, YAN S, et al. Analysis and roll prevention control for distributed drive electric vehicles[J]. World Electric Vehicle Journal, 2022, 13(11): 210. doi: 10.3390/wevj13110210
    [11]
    HUANG W, YANG X, ZHU S. Torque vectoring controller of distributed-drive electric vehicle for acceleration slip regulation and lateral stability enhancement: design and test[R]. Shanghai: SAE Technical Paper, 2020.
    [12]
    LIANG X, WANG Q, CHEN W, et al. Coordinated control of distributed drive electric vehicle by TVC and ESC based on function allocation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(4): 606-620. doi: 10.1177/09544070211026185
    [13]
    YU Z, LENG B, XIONG L, et al. Direct yaw moment control for distributed drive electric vehicle handling performance improvement[J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 486-497. doi: 10.3901/CJME.2016.0314.031
    [14]
    HAI D, XIE X, JIN L. Study on the stability control strategy for distributed driving electric vehicle[C]. 9th International Conference on Green Intelligent Transportation Systems and Safety, Green, Singapore: Springer, 2020: 757-766.
    [15]
    LU Y, LI J, JIANG W, et al. Research on handling stability control strategy of distributed drive electric vehicle[C]. 2022 6th CAA International Conference on Vehicular Control and Intelligence(CVCI), Beijing: IEEE, 2022.
    [16]
    张雷, 赵宪华, 王震坡. 四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究[J]. 汽车工程, 2020, 42(11): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011009.htm

    ZHANG L, ZHAO X H, WANG Z P. Research on coordinated control of trajectory tracking and yaw stability of electric vehicle driven by four-wheel hub motor[J]. Automotive Engineering, 2020, 42(11): 1513-1521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202011009.htm
    [17]
    陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41: 1109-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm

    CHEN T, CHEN L, XU X, et al. Path tracking and stability coordination control of distributed drive unmanned vehicle[J]. Automotive Engineering, 2019, 41: 1109-1116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm
    [18]
    RAJAMANI R. Vehicle dynamics and control[M]. Cham, Switzerland: Springer Science & Business Media, 2011.
    [19]
    DAVILA J, FRIDMAN L, LEVANT A. Second-order sliding-mode observer for mechanical systems[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1785-1789. doi: 10.1109/TAC.2005.858636
    [20]
    刘陆, 丁世宏, 李世华. 高阶滑模控制理论综述[J]. 控制理论及应用, 2022, 39(12): 2193-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202212001.htm

    LIU L, DING S H, LI S H. Review of high order sliding mode control theory[J]. Control Theory & Applications, 2022, 39(12): 2193-2201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202212001.htm
    [21]
    连晋毅, 王坤, 任艳强. 分布驱动式纯电动汽车直接横摆力矩控制研究[J]. 机械设计与制造, 2023, (11): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202311029.htm

    LIAN J Y, WANG K, REN Y Q. Research on direct yaw torque control of distributed drive pure electric vehicle[J]. Machinery Design & Manufacture, 2023, (11): 149-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202311029.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (390) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return