留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DE-EL的城市快速路合流区危险驾驶行为识别方法

谢厅 刘星良 刘唐志 徐进

谢厅, 刘星良, 刘唐志, 徐进. 基于DE-EL的城市快速路合流区危险驾驶行为识别方法[J]. 交通信息与安全, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003
引用本文: 谢厅, 刘星良, 刘唐志, 徐进. 基于DE-EL的城市快速路合流区危险驾驶行为识别方法[J]. 交通信息与安全, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003
XIE Ting, LIU Xingliang, LIU Tangzhi, XU Jin. A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model[J]. Journal of Transport Information and Safety, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003
Citation: XIE Ting, LIU Xingliang, LIU Tangzhi, XU Jin. A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model[J]. Journal of Transport Information and Safety, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003

基于DE-EL的城市快速路合流区危险驾驶行为识别方法

doi: 10.3963/j.jssn.1674-4861.2024.06.003
基金项目: 

国家自然科学基金项目 52172341

重庆市自然科学基金面上项目 CSTB2022NSCQ-MSX0519

重庆市自然科学基金面上项目 CSTB2022NSCQ-MSX1516

详细信息
    作者简介:

    谢厅(1998—),硕士研究生. 研究方向:交通安全. E-mail: 13110194502@163.com

    通讯作者:

    刘星良(1989—),博士,讲师. 研究方向:交通安全、交通流理论等. E-mail: xingliang@cqjtu.edu.cn

  • 中图分类号: U491.2+5

A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model

  • 摘要: 为提高快速路合流区行车安全水平,实现合流区危险驾驶行为准确识别与交通事故预防,基于车辆轨迹数据提出了1种合流区驾驶人危险驾驶操作行为辨识方法。依托合流区交通航拍视频轨迹数据,运用风险度量法与四分位差法确定4类合流区驾驶人危险驾驶操作行为特征指标阈值。通过前期建立的合流区危险驾驶行为谱,计算驾驶人危险操作得分G,标记危险驾驶人,实现驾驶人分类。选用ROS、SMOTE、ADASYN数据均衡算法(data equalization,DE)对不平衡数据集中的危险驾驶人样本进行扩充,降低轨迹数据集的不平衡度。联合XGBoost、LGBM、AdaBoost集成学习分类算法(ensemble learning,EL)建立DE-EL模型,以车速、变速、横向操作、位置特征以及时间占比5类特征参数变量作为输入,对合流区驾驶人危险驾驶操作行为进行识别。通过Spearman相关性分析对DE-EL识别模型输入特征参数进行优化,提升合流区危险驾驶操作行为识别模型的性能,最终从模型的精确率、召回率、F1值和AUC值确定最优合流区危险驾驶行为识别模型。研究表明:合流区驾驶人行车风险水平与横向操作关联度最高,与车辆速度关联度较低;不平衡的轨迹数据集通过单一的EL算法难以有效识别危险驾驶操作行为,DE算法可显著提升分类算法的性能;特征优化工程后,DE-EL识别模型的性能得到了提升,结果表明SMOTE-LGBM模型对合流区危险驾驶行为的识别效果最好,精确率为93.4%,召回率为92.1%,F1值为0.927,AUC值为0.933,模型可用于合流区危险驾驶行为识别、预警以及干预。

     

  • 图  1  研究区域示意图

    Figure  1.  Diagram of the study area

    图  2  DE-EL识别模型框架

    Figure  2.  Frame diagram of DE-EL model

    图  3  单一集成学习算法识别效果

    Figure  3.  Recognition performance of single ensemble learning algorithm

    图  4  DE-EL识别模型性能评价

    Figure  4.  Recognition performance of DE-EL model

    图  5  降维后DE-EL模型识别效果

    Figure  5.  Recognition performance of DE-EL model after downscaling

    表  1  危险驾驶行为特征指标阈值

    Table  1.   Risky driving behaviors characteristic indicator thresholds

    指标 阈值
    TITTC/(1/s) 0.33
    偏航率/((°)/s2 9.885
    Tmax{ITTC}/(1/s) 0.26
    冲击度/(m/s3 1.23
    下载: 导出CSV

    表  2  危险驾驶行为赋权

    Table  2.   Risky driving behaviors weighting

    危险驾驶行为 wi
    危险跟驰 0.173
    急打方向 0.405
    危险换道 0.212
    急加减速 0.210
    下载: 导出CSV

    表  3  混淆矩阵

    Table  3.   Confusion matrix

    驾驶人群 识别为危险驾驶人 识别为正常驾驶人
    真实危险驾驶人 TP FN
    真实正常驾驶人 FP TN
    下载: 导出CSV

    表  4  轨迹特征参数指标

    Table  4.   Trajectory characteristic parameter indicators

    特征参数类别 指标 含义
    车速类/(m/s) V_mean 速度的平均值、最大值和标准差
    V_max
    V_std
    FV_mean 跟驰速度差的平均值、最大值和标准差
    FV_max
    FV_std
    TFV_mean 目标车道前车速度差的平均值、最大值和标准差
    TFV_max
    TFV_std
    TGV_mean 目标车道后车速度差的平均值、最大值和标准差
    TGV_max
    TGV_std
    变速类/(m/s2 A_mean 加速度的平均值、最大值和标准差
    A_max
    A_std
    DA_mean 减速度的平均值、最小值和标准差
    DA_min
    DA_std
    横向操作类/(°) θ_mean 偏航角的平均值、最大值和标准差
    θ_max
    θ_std
    D_mean 前车距离的平均值、最小值和标准差
    D_min
    D_std
    位置特征类/m DTF_mean 目标车道前车距离的平均值、最小值和标准差
    DTF_min
    DTF_std
    DTG_mean 目标车道后车距离的平均值、最小值和标准差
    DTG_min
    DTG_std
    时间占比类/% RA 急加速时间占比(A > 2.5m/s2
    RDA 急减速时间占比(DA < -2.5m/s2
    RC 超速时间占比(V > 80km/h)
    下载: 导出CSV

    表  5  危险操作得分G与输入特征参数的Spearman系数

    Table  5.   Correlation coefficients between G and the characteristic parameters

    序号 特征参数 Spearman相关系数 P
    1 θ_std 0.774 < 0.001
    2 θ_max 0.743 < 0.001
    3 θ_mean 0.731 < 0.001
    4 RA 0.315 < 0.001
    5 A_mean 0.280 < 0.001
    6 DA_mean -0.243 < 0.001
    7 DA_min -0.219 < 0.001
    8 A_std 0.219 < 0.001
    9 DA_std 0.219 < 0.001
    10 RDA 0.209 < 0.001
    11 TGV_max 0.202 0.003
    12 A_max 0.200 < 0.001
    下载: 导出CSV

    表  6  显著性强相关驾驶行为特征参数

    Table  6.   Parameters of significantly strongly correlated driving behavior characteristics

    关联特征参数 Spearman相关系数 P
    DA_std A_std 0.983 < 0.001
    θ_std θ_max 0.972 < 0.001
    θ_std θ_mean 0.924 < 0.001
    DA_min A_std 0.864 < 0.001
    DA_min DA_std 0.864 < 0.001
    θ_mean θ_max 0.854 < 0.001
    下载: 导出CSV
  • [1] LI X, ZHUGE C, YU B. Analysis on the impact of ilegal driver behaviors on road traffic accidents case study on China[C]. The 11th International Conference on Intelligent Human-Machine Systems and Cybermetics, Hangzhou: IEEE, 2019.
    [2] 胡江碧, 何禄诚, 王荣华. 高速公路互通立交安全性评价研究综述[J]. 中国公路学报, 2020, 33(7): 17-28. doi: 10.3969/j.issn.1001-7372.2020.07.002

    HU J B, HE L C, WANG R H. Review of safety evaluation of freeway interchange[J]. China Journal of Highway and Transport, 2020, 33(7): 17-28. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.07.002
    [3] CHEN S, XUE Q, ZHAO X, et al. Risky driving behavior recognition based on vehicle trajectory[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12373. doi: 10.3390/ijerph182312373
    [4] XIAN H, HOU Y, WANG Y, et al. Influence of risky driving behavior and road section type on urban expressway driving safety[J]. Sustainability, 2023, 15(1): 398.
    [5] 唐克双, 谈超鹏, 周楠. 基于轨迹数据的交叉口相位切换期间危险驾驶行为实证分析[J]. 中国公路学报, 2018, 31(4): 88-97. doi: 10.3969/j.issn.1001-7372.2018.04.011

    TANG K S, TAN C P, ZHOU N. Empirical analysis of risky driving behavior during the phase transition intervals at signalized intersections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2018, 31(4): 88-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.04.011
    [6] CHEN T, SHI X, WONG Y D. Key feature selection and risk prediction for lane-changing behaviors based on vehicles'trajectory data[J]. Accident Analysis & Prevention, 2019, 129: 156-169.
    [7] SHI X, WONG Y D, LI M, et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention, 2019, 129: 170-179.
    [8] 薛清文, 蒋愚明, 陆键. 基于轨迹数据的危险驾驶行为识别方法[J]. 中国公路学报, 2020, 33(6): 84-94. doi: 10.3969/j.issn.1001-7372.2020.06.008

    XUE Q W, JIANG Y M, LU J. Risky driving behavior recognition based on trajectory data[J]. China Journal of Highway and Transport, 2020, 33(6): 84-94. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.06.008
    [9] 张方方, 王长君, 王俊骅. 城市快速路匝道合流区车辆交互行为模式[J]. 中国公路学报, 2022, 35(9): 66-79. doi: 10.3969/j.issn.1001-7372.2022.09.006

    ZHANG F F, WANG C J, WANG J H. Vehicle interaction patterns at on-ramp merging area of urban expressway[J]. China Journal of Highway and Transport, 2022, 35(9): 66-79. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.09.006
    [10] 马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型[J]. 交通运输系统工程与信息, 2018, 18 (2): 142-148.

    MA Y L, QI S M, WU H T, et al. Traffic conflict identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2), 142-148. (in Chinese)
    [11] 温惠英, 李秋灵, 赵胜. 快速路合流区大型车换道时空特征及风险研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 11-21.

    WEN H Y, LI Q L, ZHAO S. Research on spatiotemporal characteristic and risk of lane-changing behaviors of large vehicles in expressway merging area[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 11-21. (in Chinese)
    [12] GU X, CAI Q, LEE J, et al. Proactive crash risk prediction modeling for merging assistance system at interchange merging areas[J]. Traffic Injury Prevention, 2020, 21(3): 234-240. doi: 10.1080/15389588.2020.1734581
    [13] 冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008

    FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
    [14] 刘唐志, 毕辉云, 杨卓思, 等. 基于操纵量指标的合流区危险驾驶行为谱研究[J]. 交通运输系统工程与信息, 2023, 23(2): 242-251.

    LIU T Z, BI H Y, YANG Z S, et al. Research on dangerous driving behavior spectrum in merging area based on maneuver indicators[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 242-251. (in Chinese)
    [15] 陆键, 王可, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为实时辨识方法[J]. 交通运输工程学报, 2020, 20(6): 227-235.

    LU J, WANG K, JIANG Y M. Real-time identification method of abnormal road driving behavior based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 227-235. (in Chinese)
    [16] 王可, 陆键, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J]. 交通运输工程学报, 2020, 20(6): 236-249.

    WANG K, LU J, JIANG Y M. Abnormal road driving behavior spectrum establishment and characteristic value calculation method based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 236-249. (in Chinese)
    [17] 万豫, 黄妙华, 王思楚. 基于改进DBSCAN算法的驾驶风格识别方法研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(10): 1313-1320. doi: 10.3969/j.issn.1003-5060.2020.10.003

    WAN Y, HUANG M H, WANG S C. Research on a driving style recognition method based on improved DBSCAN algorithm[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(10): 1313-1320. (in Chinese) doi: 10.3969/j.issn.1003-5060.2020.10.003
    [18] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. doi: 10.1613/jair.953
    [19] HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. The 2008 International Joint Conference on Neural Networks, Piscataway: IEEE, 2008.
    [20] 刘定祥, 乔少杰, 张永清, 等. 不平衡分类的数据采样方法综述[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 102-112.

    LIU D X, QIAO S J, ZHANG Y Q, et al. A survey on data sampling methods in imbalance classification[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(7): 102-112. (in Chinese)
    [21] 曹莹, 苗启广, 刘家辰, 等. AdaBoost算法研究进展与展望[J]. 自动化学报, 2013, 39(6): 745-758.

    CAO Y, MIAO Q G, LIU J Z, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758. (in Chinese)
    [22] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]. The 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016.
    [23] KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30(1): 3146-3154.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  35
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 网络出版日期:  2025-03-08

目录

    /

    返回文章
    返回