留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速公路混合交通流圆曲线半径可靠性设计

张航 胡颖鹏 彭翔 孙煜 吕能超

张航, 胡颖鹏, 彭翔, 孙煜, 吕能超. 高速公路混合交通流圆曲线半径可靠性设计[J]. 交通信息与安全, 2025, 43(4): 46-56. doi: 10.3963/j.jssn.1674-4861.2025.04.005
引用本文: 张航, 胡颖鹏, 彭翔, 孙煜, 吕能超. 高速公路混合交通流圆曲线半径可靠性设计[J]. 交通信息与安全, 2025, 43(4): 46-56. doi: 10.3963/j.jssn.1674-4861.2025.04.005
ZHANG Hang, HU Yingpeng, PENG Xiang, SUN Yu, LYU Nengchao. A Reliability Design of Circular Curve Radius of Highway Under Mixed Traffic Flow[J]. Journal of Transport Information and Safety, 2025, 43(4): 46-56. doi: 10.3963/j.jssn.1674-4861.2025.04.005
Citation: ZHANG Hang, HU Yingpeng, PENG Xiang, SUN Yu, LYU Nengchao. A Reliability Design of Circular Curve Radius of Highway Under Mixed Traffic Flow[J]. Journal of Transport Information and Safety, 2025, 43(4): 46-56. doi: 10.3963/j.jssn.1674-4861.2025.04.005

高速公路混合交通流圆曲线半径可靠性设计

doi: 10.3963/j.jssn.1674-4861.2025.04.005
基金项目: 

国家自然科学基金项目 52472366

湖北省自然科学基金项目 2025AFD759

详细信息
    作者简介:

    张航(1967—),博士,副教授. 研究方向:道路工程规划设计. E-mail:zhanghang1999@sina.com

    通讯作者:

    吕能超(1982—),博士,研究员. 研究方向:交通安全、驾驶行为研究. E-mail:lnc@whut.edu.com

  • 中图分类号: U412.3

A Reliability Design of Circular Curve Radius of Highway Under Mixed Traffic Flow

  • 摘要: 针对自动驾驶汽车(autonomous vehicles,AVs)与人工驾驶车辆(human-drive vehicles,HDVs)组成的混合交通流在高速公路圆曲线路段因路侧设施遮挡等原因导致的停车视距不足问题,以及传统确定性方法计算模型的局限性,研究保障混合交通流视距安全的高速公路最小圆曲线半径。基于防抱死制动系统(anti-lock braking system,ABS)制动过程、横净距法,将汽车制动过程分为3个阶段,并考虑不同偏向、不同车道的有效视距,分别建立停车视距和有效视距计算模型,量化最不利情况的视距需求与供给。基于可靠度理论,考虑不同的AVs渗透率,以及驾驶人或自动驾驶系统在运行速度和制动反应时间上的随机性,使用不确定性的方法建立圆曲线半径对应的停车视距可靠性计算模型,计算《公路路线设计规范》中圆曲线一般最小半径(以下简称规范值)的停车视距可靠概率。使用95%作为目标可靠概率,提出满足视距安全的最小圆曲线半径推荐值和不同圆曲线半径下的安全车速推荐值,通过SUMO仿真验证推荐值的合理性。结果表明:AVs渗透率为0%、圆曲线半径取规范值时左偏最内侧车道的可靠概率均小于95%;随着AVs渗透率增大,可靠概率随之增大;AVs渗透率越高,满足停车视距可靠性要求的最小圆曲线半径越小、安全车速越高;与规范值相比,采用推荐值时仿真试验的交通冲突率平均降低了71.1%、交通流功率平均提高了27.3%,且进一步增大圆曲线半径无显著效益。

     

  • 图  1  汽车制动过程示意图

    Figure  1.  Car braking process diagram

    图  2  圆曲线有效视距示意图

    Figure  2.  Schematic diagram of circular curve available sight distance

    图  3  右偏圆曲线横净距法计算模型示意图

    Figure  3.  Schematic diagram of calculation model of right-turning circular curve with horizontal clear distance method

    图  4  右偏圆曲线横净距示意图

    Figure  4.  Schematic diagram of horizontal clear distance for the right-turning circular curve

    图  5  左偏圆曲线横净距法计算模型示意图

    Figure  5.  Schematic diagram of calculation model of left-turning circular curve with horizontal clear distance method

    图  6  左偏圆曲线横净距示意图

    Figure  6.  Schematic diagram of horizontal clear distance for the left-turning circular curve

    图  7  双向4车道设计速度100 km/h下可靠概率分布曲线

    Figure  7.  Probability distribution curve for two-way four-lane design speed of 100 km/h

    图  8  AVs加速度调整规则

    Figure  8.  AVs acceleration adjustment rules

    图  9  不同渗透率、不同圆曲线半径下的交通冲突率

    Figure  9.  Traffic conflict rate under different penetration rates and radius of circular curve

    图  10  不同渗透率、不同圆曲线半径下的交通流功率

    Figure  10.  Traffic flow efficiency under different penetration rates and radius of circular curve

    表  1  圆曲线路段线形设计值

    Table  1.   The design value of circular curve alignment

    设计参数 线形设计值
    设计速度Vd /(km/h) 120 100 80
    圆曲线一般最小半径R / m 1 000 700 400
    中央分隔带宽度Bm / m 3.0 2.0 2.0
    左侧路缘带宽度BL / m 0.75 0.75 0.5
    车道宽度BX / m 3.75 3.75 3.75
    右侧硬路肩宽度BR / m 3.0 3.0 3.0
    侧向余宽C / m 0.5 0.25 0.25
    下载: 导出CSV

    表  2  自由流速度K-S检验结果

    Table  2.   K-S test results of vehicle speed

    检验参数 检验结果
    双向4车道 双向6车道
    Vd /(km/h) 120 100 80 120 100 80
    速度采集路段 G4 S1 S18 G0422 S7 S19
    样本量 752 683 430 769 604 486
    最内侧车道/(km/h) 均值 108.64 93.84 78.46 113.10 92.49 75.91
    标准差 9.87 9.44 9.18 9.20 10.17 9.13
    精确显著性水平(双侧) 0.897 0.834 0.751 0.860 0.599 0.770
    样本量 683 658 468 702 529 398
    最外侧车道/(km/h) 均值 101.45 89.21 72.39 105.38 87.30 71.74
    标准差 10.49 11.49 11.93 10.69 12.42 10.38
    精确显著性水平(双侧) 0.573 0.761 0.850 0.676 0.751 0.649
    下载: 导出CSV

    表  3  可靠概率计算结果

    Table  3.   Results of probability

    Vd /(km/h) 规范值/m p /% 可靠概率/%
    双向4车道 双向6车道
    右偏最外侧车道 左偏最内侧车道 右偏最外侧车道 左偏最内侧车道
    120 1 000 0 98.02 25.83 96.04 26.99
    20 98.37 38.89 96.89 39.39
    40 98.83 51.55 97.49 52.91
    60 99.21 64.18 98.24 65.95
    80 99.54 77.09 99.02 79.14
    100 99.96 89.98 99.75 92.00
    100 700 0 97.17 30.03 97.37 35.06
    20 97.79 42.06 97.86 46.61
    40 98.34 55.02 98.32 58.13
    60 98.81 67.67 98.84 69.68
    80 99.32 80.00 99.32 81.30
    100 99.83 92.46 99.81 93.12
    80 400 0 96.53 26.38 97.85 33.48
    20 97.17 38.44 98.25 45.33
    40 97.84 50.98 98.73 57.66
    60 98.50 63.36 99.08 69.48
    80 99.12 76.01 99.47 81.50
    100 99.73 88.14 99.93 93.79
    下载: 导出CSV

    表  4  最小圆曲线半径推荐值

    Table  4.   Recommended minimum radius of circular curves

    Vd /(km/h) 规范值/m p /% 圆曲线最小半径推荐值/m
    双向4车道 双向6车道
    120 1 000 0 2 320 2 230
    20 2 220 2 140
    40 2 100 2 030
    60 1 930 1 860
    80 1 640 1 580
    100 1 120 1 070
    100 700 0 1 660 1 650
    20 1 600 1 570
    40 1 490 1 470
    60 1 360 1 330
    80 1 140 1 110
    100 750 740
    80 400 0 1 150 1 020
    20 1 100 970
    40 1 030 920
    60 930 820
    80 760 670
    100 470 410
    下载: 导出CSV

    表  5  安全车速推荐值(左偏圆曲线最内侧车道)

    Table  5.   Recommended safe speed (innermost lane of left curve)

    Vd /(km/h) 规范值/m p /% 安全车速推荐值/(km/h)
    双向4车道 双向6车道
    120 1 000 0 89 88
    20 90 89
    40 91 91
    60 93 93
    80 98 96
    100 117 118
    100 700 0 76 77
    20 77 77
    40 78 78
    60 82 81
    80 84 84
    100 100 100
    80 400 0 60 60
    20 62 61
    40 63 64
    60 64 65
    80 67 68
    100 80 80
    下载: 导出CSV

    表  6  交通冲突率平均变化率计算结果

    Table  6.   Calculation result of average change rate of traffic conflict rate

    p /% 平均变化率/% 推荐值前后平均变化率比值
    1 000 m~推荐值 推荐值~3 000 m
    0 -2.056 -0.528 3.89
    20 -1.505 -0.448 3.36
    40 -1.781 -0.252 7.06
    60 -1.000 -0.080 12.51
    80 -0.038 -0.012 3.05
    100 -0.04 -0.001 81.47
    注:推荐值见表 4
    下载: 导出CSV

    表  7  交通流功率平均变化率计算结果

    Table  7.   Calculation result of average change rate of traffic flow efficiency

    p /% 平均变化率/% 推荐值前后平均变化率比值
    1 000 m~推荐值 推荐值~3 000 m
    0 46.30 13.64 3.39
    20 58.19 17.97 3.24
    40 62.94 18.09 3.48
    60 65.69 18.32 3.59
    80 72.65 20.77 3.50
    100 4.98 0.61 8.15
    注:推荐值见表 4
    下载: 导出CSV
  • [1] 庞松. 科学推动自动驾驶技术发展与应用——拥抱新技术, 迎接新挑战[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 119-122.

    PANG S. Scientifical promotion of the development and application of automatic driving technologies and meet new challenges[J]. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(10): 119-122. (in Chinese)
    [2] 王雪松, 覃定明, 叶欣辰, 等. 面向自动驾驶的道路适驾性研究进展[J]. 中国公路学报, 2024, 37(1): 175-193.

    WANG X S, QIN D M, YE X C, et al. Recent developments on road readiness for automated driving[J]. China Journal of Highway and Transport, 2024, 37(1): 175-193. (in Chinese)
    [3] 中华人民共和国交通运输部. 公路路线设计规范: JTG D20-2017[S]. 北京: 人民交通出版社, 2017.

    Ministry of Transport of the People's Republic of China. Design specifications for highway alignment: JTG D20-2017[S]. Beijing: People's Communications Press, 2017. (in Chinese)
    [4] ZHAO Y F, YING X Z, LI J R. Research on Geometric design standards for freeways under a fully autonomous driving environment[J]. Applied Sciences, 2022, 12: 7109. doi: 10.3390/app12147109
    [5] YE X C, WANG X S. Operational design domain of automated vehicles at freeway entrance terminals[J]. Accident Analysis & Prevention, 2022, 174: 106776.
    [6] WANG S Y, MA Y, LIU J Z, et al. Readiness of as-built horizontal curved roads for LiDAR-based automated vehicles: a virtual simulation analysis[J]. Accident Analysis & Prevention, 2022, 174: 106762.
    [7] WANG S Y, MAO C Y, MA Y, et al. Examining the feasibility of current spiral curve design controls for LiDAR-based automated vehicles[J]. IET Intelligent Transport Systems, 2023, 17(5): 848-866. doi: 10.1049/itr2.12310
    [8] AL-SHEIKH O, GHASEMI S H, JALAYER M. Reliability-based analysis of horizontal curve design by evaluating the impact of vehicle automation on roadway departure crashes and safety performance[J]. Heliyon, 2024, 10(4): e25346. doi: 10.1016/j.heliyon.2024.e25346
    [9] SHALKAMY A, GARGOUM S, EL-BASYOUNY K. Towards a more inclusive and safe design of horizontal curves: exploring the association between curve features, reliability measures, and safety[J]. Accident Analysis & Prevention, 2021, 153: 106009.
    [10] ALSALEH R, LANZARO G, SAYED T. Incorporating design consistency into risk-based geometric design of horizontal curves: a reliability-based optimization framework[J]. Transport Metrica A: Transport Science, 2024, 20(2): 2174356. doi: 10.1080/23249935.2023.2174356
    [11] 盛旭高, 于梦阁, 霍炜. 基于停车视距的强降雨环境下公路车辆制动安全可靠性研究[J]. 公路交通科技, 2023, 40 (1): 227-235.

    SHENG X G, YU M G, HUO W. Study on braking safety reliability of highway vehicles in heavy rainfall environment based on stopping sight distance[J]. Journal of Highway and Transportation Research and Development, 2023, 40(1): 227-235. (in Chinese)
    [12] 张航, 张肖磊, 吕能超. 高速公路停车视距可靠性设计[J]. 公路交通科技, 2019, 36(4): 44-49, 87.

    ZHANG H, ZHANG X L, LYU N C. Reliability design for stopping sight distance of expressway[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (4): 44-49, 87. (in Chinese)
    [13] 沈国松. 异质交通流下高速公路主线连续入口间距研究[D]. 武汉: 武汉理工大学, 2024.

    SHEN G S. Research on distance of the continuous entrance of highway mainline under heterogenerous traffic flow environment[D]. Wuhan: Wuhan University of Technology, 2024. (in Chinese)
    [14] 单慧敏. 多车道高速公路停车视距研究[D]. 西安: 长安大学, 2020.

    SHAN H M. Research on stopping sight distance of multi-lane expressway[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [15] 张航, 熊宇豪, 吕能超. 基于停车视距的高速公路下坡段货车制动可靠性[J/OL]. 吉林大学学报(工学版), 1-9[2025-02-22]. https://doi.org/10.13229/j.cnki.jdxbgxb.20240764.

    ZHANG H, XIONG Y H, LYU N C. Reliability of truck braking on downhill sections of highways based on stopping sight distance[J/OL]. Journal of Jilin University(Engineering and Technology Edition), 1-9[2025-02-22]. https://doi.org/10.13229/j.cnki.jdxbgxb.20240764. (in Chinese)
    [16] 潘兵宏, 赵悦彤, 温长鹏, 等. 基于驾驶人视觉特性和停车视距的公路平面交叉角度研究[J]. 公路交通科技, 2020, 37 (10): 118-126.

    PAN B H, ZHAO Y T, WEN C P, et al. Study on highway intersection angle based on driver's visual characteristics and stopping sight distance[J]. Journal of Highway and Transportation Research and Development, 2020, 37(10): 118-126. (in Chinese)
    [17] LIOI A, HAZOOR A, CASTRO M, et al. Impact on driver behaviour of guardrails of different height in horizontal-vertical coordinated road scenarios with a limited available sight distance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84: 287-300. doi: 10.1016/j.trf.2021.12.008
    [18] 邢福东, 史琴. 高速公路曲线路段内侧车道停车视距分析及改善措施研究[J]. 公路交通科技(应用技术版), 2020, 16 (11): 311-313.

    XING F D, SHI Q. Study on stopping sight distance in the inner lane of expressway curve section and study on improvement measures[J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2020, 16(11): 311-313. (in Chinese)
    [19] 白浩晨, 潘兵宏, 张江洪, 等. 基于停车视距的高速公路最小圆曲线半径研究[J]. 公路交通科技, 2021, 38(9): 60-67, 77.

    BAI H C, PAN B H, ZHANG J H, et al. Study on minimum circular curve radius of expressway based on stopping sight distance[J]. Journal of Highway and Transportation Research and Development, 2021, 38(9): 60-67, 77. (in Chinese)
    [20] BASSANI M, CATANI L, SALUSSOLIA A, et al. A driving simulation study to examine the impact of available sight distance on driver behavior along rural highways[J]. Accident Analysis & Prevention, 2019, 131: 200-212.
    [21] 李阳钊, 陈海华, 黄申春, 等. 基于自然驾驶轨迹数据的城市快速路小型车辆换道特性分析[J]. 交通信息与安全, 2024, 42(5): 33-41.

    LI Y Z, CHEN H H, HUANG S C, et al. Analysis of small vehicle lane-changing characteristics of urban expressway based on naturalistic driving trajectory data[J]. Journal of Transport Information and Safety, 2024, 42(5): 33-41. (in Chinese)
    [22] DATA FROM SKY. An ultimate tool for the next generation of traffic surveys[DB/OL]. (2020-03-10)[2025-03-18]. https://datafromsky.com/trafficsurvey/
    [23] 方靖, 荣建, 祝站东, 等. 自由流状态的判别标准研究[J]. 中国公路学报, 2010, 23(增刊1): 65-68.

    FANG J, RONG J, ZHU Z D, et al. Research on judgment criterion of free-flow state[J]. China Journal of Highway and Transport, 2010, 23(S1): 65-68. (in Chinese)
    [24] 王科, 刘晏荣, 张发如. 停车视距计算长度的修正研究[J]. 公路, 2023, 68(7): 322-327.

    WANG K, LIU Y R, ZHANG F R. Research on correction calculated length of stopping sight distance[J]. Highway, 2023, 68(7): 322-327. (in Chinese)
    [25] 李霖, 朱西产, 马志雄. 驾驶人在真实交通危险工况中的制动反应时间[J]. 汽车工程, 2014, 36(10): 1225-1229, 1253.

    LI L, ZHU X C, MA Z X. Driver brake reaction time under real traffic risk scenarios[J]. Automotive Engineering, 2014, 36(10): 1225-1229, 1253. (in Chinese)
    [26] 王星月. 合并设置下互通立交主线渐变点至服务区长度可靠性设计[D]. 武汉: 武汉理工大学, 2024.

    WANG X Y. Reliability design of the length from the interchange mainline transition point to the service area under combined setting[D]. Wuhan: Wuhan University of Technology, 2024. (in Chinese)
    [27] 中华人民共和国交通运输部. 公路工程结构可靠性设计统一标准: JTG 2120-2020[S]. 北京: 中交公路规划设计院有限公司, 2020.

    Ministry of Transport of the People's Republic of China. Unified standard for reliability design of highway engineering structures: JTG 2120-2020[S]. Beijing: CCCC Highway Consultants Co., Ltd., 2020. (in Chinese)
    [28] 汪金辉, 周雨, 庄磊, 等. 全球客船的社会风险可接受标准及应用研究[J]. 中国安全科学学报, 2020, 30(9): 195-201.

    WANG J H, ZHOU Y, ZHUANG L, et al. Social risk acceptance criteria of global passenger ships and its application[J]. China Safety Science Journal, 2020, 30(9): 195-201. (in Chinese)
    [29] 姜涵, 张健, 张海燕, 等. 基于强化学习的交叉口智能网联车多目标通行控制方法[J]. 交通信息与安全, 2024, 42(1): 84-93. doi: 10.3963/j.jssn.1674-4861.2024.01.010

    JIANG H, ZHANG J, ZHANG H Y, et al. A multi-objective traffic control method for connected and automated vehicle at signalized intersection based on reinforcement learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 84-93. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.010
    [30] MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001
    [31] SUMO, Car-Following-Models[EB/OL]. (2024-10-30)[2025-02-22]. https://sumo.dlr.de/docs/Car-Following-Models.html.
    [32] 李鹏辉, 董倩茹, 袁赫男, 等. 面向自动驾驶仿真测试的高覆盖切入场景库生成方法[J]. 中国公路学报, 2024, 37(7): 237-249.

    LI P H, DONG Q R, YUAN H N, et al. High-coverage cut-in scenario library generation for automated driving simulation testing[J]. China Journal of Highway and Transport, 2024, 37 (7): 237-249. (in Chinese)
    [33] 中华人民共和国交通运输部. 公路工程技术标准: JTG B01-2014[S]. 北京: 人民交通出版社, 2014.

    Ministry of Transport of the People's Republic of China. Technical standard of highway engineering: JTG B01-2014[S]. Beijing: People's Communications Press, 2014. (in Chinese)
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-25

目录

    /

    返回文章
    返回