留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向视野盲区的固定翼飞行器公路碰撞模型

常银霞 张世卿 靳慧斌 李玮玲 张召悦 杨常卫

常银霞, 张世卿, 靳慧斌, 李玮玲, 张召悦, 杨常卫. 面向视野盲区的固定翼飞行器公路碰撞模型[J]. 交通信息与安全, 2025, 43(4): 37-45. doi: 10.3963/j.jssn.1674-4861.2025.04.004
引用本文: 常银霞, 张世卿, 靳慧斌, 李玮玲, 张召悦, 杨常卫. 面向视野盲区的固定翼飞行器公路碰撞模型[J]. 交通信息与安全, 2025, 43(4): 37-45. doi: 10.3963/j.jssn.1674-4861.2025.04.004
CHANG Yinxia, ZHANG Shiqing, JIN Huibin, LI Weiling, ZHANG Zhaoyue, YANG Changwei. A Collision Model for Fixed-wing Aircraft over Highways Considering Visual Blind Zones[J]. Journal of Transport Information and Safety, 2025, 43(4): 37-45. doi: 10.3963/j.jssn.1674-4861.2025.04.004
Citation: CHANG Yinxia, ZHANG Shiqing, JIN Huibin, LI Weiling, ZHANG Zhaoyue, YANG Changwei. A Collision Model for Fixed-wing Aircraft over Highways Considering Visual Blind Zones[J]. Journal of Transport Information and Safety, 2025, 43(4): 37-45. doi: 10.3963/j.jssn.1674-4861.2025.04.004

面向视野盲区的固定翼飞行器公路碰撞模型

doi: 10.3963/j.jssn.1674-4861.2025.04.004
基金项目: 

国家重点研发计划项目 2020YFB1600101

详细信息
    作者简介:

    常银霞(1979—),博士,讲师. 研究方向: 飞行品质与飞行安全. E-mail:envision_ch@163.com

    通讯作者:

    靳慧斌(1976—),博士,教授.研究方向:智慧人机协同. E-mail:airhf207@163.com

  • 中图分类号: V328.1

A Collision Model for Fixed-wing Aircraft over Highways Considering Visual Blind Zones

  • 摘要: 针对小型固定翼飞行器在公路紧急迫降时,视野盲区影响飞行员安全距离判断,进而增加飞行器与地面车辆碰撞概率的问题,以SA60L小型固定翼飞行器为研究对象,构建了面向视野盲区的低空飞行器-地面车辆碰撞模型,量化研究了多因素对碰撞风险的影响。基于SA60L的降落特性,建立目视降落过程的三维视野盲区模型,以飞行员位置为基点构建三维坐标系,结合人眼20°下视角约束,确定视野盲区在地面的投影范围。结合地面车辆驾驶员反应时等参数,将碰撞场景划分为2类,建立碰撞概率模型:针对后方车辆碰撞场景,推导未制动、制动后速度未减至0,以及制动后速度减至0这3种状态下的碰撞概率公式;针对前方车辆碰撞场景,以飞行器着陆滑跑停止距离覆盖前方车辆为冲突条件,建立碰撞概率计算逻辑。同时,将三维视野盲区作为概率计算的前置约束,仅当地面车辆进入危险区域时启动计算采用蒙特卡洛方法进行10 000次仿真,分析地面车速、车流量、飞行近地速度及降落高度对碰撞风险的影响,并构建多元线性回归模型。结果表明:地面车流量(t =15.78)与地面车速(t =9.25)对碰撞概率影响最显著,车流量与近地速度均与碰撞概率近似线性正相关,地面车速升高使碰撞概率振幅增大,降落高度对碰撞概率呈“先增后减”非线性影响;当地面车速超过80 km/h且降落高度低于200 m时形成高风险区域,碰撞概率从安全阈值区(车速小于40 km/h且高度大于200 m)的0.12提升至0.27,增幅2.3倍。多元线性回归模型决定系数R2为0.965,模型拟合度与显著性良好。

     

  • 图  1  SA60L实物图

    Figure  1.  The physical picture of SA60L

    图  2  小型固定翼飞行器降落轨迹示意图

    Figure  2.  Small fixed-wing aircraft landing trajectory diagram

    图  3  驾驶员视野盲区三维图

    Figure  3.  Three-dimensional display of blind area of driver's visual field

    图  4  地面车流量对碰撞概率的影响

    Figure  4.  The influence of ground traffic flow on collision probability

    图  5  近地速度对碰撞概率的影响

    Figure  5.  The influence of low-altitude speed on collision probability

    图  6  地面车辆速度对碰撞概率的影响

    Figure  6.  The influence of ground vehicle speed on collision probability

    图  7  降落点高度对碰撞概率的影响

    Figure  7.  The influence of landing point altitude on collision probability

    图  8  多因素共同作用对碰撞概率的影响

    Figure  8.  The influence of multi-factor joint action on collision probability

    表  1  SA60L飞机参数

    Table  1.   SA60L aircraft parameter

    参数 数值 参数 数值
    整机长/m 6.89 巡航速度/(km/h) 220
    水平机高/m 2.53 机动速度/(km/h) 180
    翼展/m 8.6 着陆滑跑停止距离/m 175
    失速速度/(km/h) 73 前部设备窗口/(mm×mm) 500×400
    起飞离地速度/(km/h) 85 后部设备窗口/(mm×mm) 400×350
    下载: 导出CSV

    表  2  多元线性回归模型参数及模型评价结果

    Table  2.   The parameters of multiple linear regression model and model evaluation results

    参数 数值 t p
    截距β0 -0.302 1 -12.36 <1×10-16
    车流量系数β1 0.000 12 15.78 <1×10-16
    近地速度系数β2 0.015 0 7.24 <1×10-16
    地面车速系数β3 0.006 0 9.25 <1×10-16
    降落点高度系数β4 -0.002 5 7.86 <1×10-16
    决定系数R2 0.965
    F统计量 2 846.32
    残差标准差 0.021
    下载: 导出CSV
  • [1] MIHARA Y N, TSUBASA N, et al. Airframe design optimization and simulation of a flying car for medical emergencies[J]. International Journal of Automation Technology, 2022, 16(2): 183-196. doi: 10.20965/ijat.2022.p0183
    [2] 孟祥伟, 张平, 王瑛. 交叉航路航空器碰撞风险评估[J]. 北京航空航天大学学报, 2010, 36(9): 1021-1025.

    MENG X W, ZHANG P, WANG Y. Cross route aircraft collision risk assessment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9): 1021-1025. (in Chinese).
    [3] LIU J, CHEN Z, YU J Y, et al. Unmanned aerial vehicle strike on a flat plate: tests and numerical simulations[J]. Chinese Journal of Aeronautics, 2023, 36(4): 286-298. doi: 10.1016/j.cja.2023.02.018
    [4] ZHANG Z D, WANG Z J, YU J, et al. Extended dynamic system modulation for real-time obstacle avoidance[J]. Chinese Journal of Aeronautics, 2022, 35(12): 212-225. doi: 10.1016/j.cja.2022.01.007
    [5] GUAN X M, LV R L, SHI H X, et al. A survey of safety separation management and collision avoidance approaches of civil UAS operating in integration national airspace system[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2851-2863. doi: 10.1016/j.cja.2020.05.009
    [6] GAN X, WU Y, LIU P, et al. Dynamic collision avoidance zone modeling method based on UAV emergency collision avoidance trajectory[C]. 2020 IEEE International Conference on Artificial Intelligence and Information Systems, Dalian, China: IEEE, 2020: 693-696.
    [7] PAN W J, XU Y X, WANG J K. Traffic collision avoidance system warning risk of transport and training aircraft based on related parallel approaches[C]. 2022 International Conference on Computer Engineering and Artificial Intelligence, Shijiazhuang, China: IEEE, 2022.
    [8] ZHOU Q, FENG H, LIU Y. Multigene and improved anti-collision RRT* algorithms for unmanned aerial vehicle task allocation and route planning in an urban air mobility scenario[J]. Biomimetics, 2024, 9(3): 125-132. doi: 10.3390/biomimetics9030125
    [9] 王兴隆, 王友杰. 面向城市低空的多机型eVTOL安全间隔评估[J]. 航空学报, 2025, 46(1): 268-283.

    WANG X L, WANG Y J. Multi-Aircraft eVTOL Safety Interval evaluation for urban low altitude[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 268-283. (in Chinese)
    [10] 王兴隆, 王友杰. 基于改进Event模型的多旋翼型eVTOL垂直间隔安全评估方法[J]. 交通信息与安全, 2024, 42(1): 19-27. doi: 10.3963/j.jssn.1674-4861.2024.01.003

    WANG X L, WANG Y J. A safety evaluation of vertical separation for multi-rotor eVTOL basedon an improved event model[J]. Journal of Transport Information and Safety, 2024, 42(1): 19-27. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.003
    [11] 陈锦涌, 周锐, 张宇航, 等. 一种考虑飞行轨迹不确定性的碰撞风险评估方法[J]. 中国科学: 技术科学, 2021, 51: 469-479.

    CHEN J Y, ZhOU R, ZHANG Y H, et al. Collision risk evaluation method for flight trajectory with uncertainty[J]. Scientia Sinica(Technologica), 2021, 51: 469-479. (in Chinese)
    [12] 张健, 宗石研, 赵嶷飞, 等. 非交叉汇聚跑道同时起降运行管制策略[J]. 科学技术与工程, 2025, 25(20): 8753-8759.

    ZHANG J, ZONG SH Y, ZHAO Y F, et al. Control strategy for simultaneous departure and approach on non-intersecting converging runways[J]. Science Technology and Engineering, 2025, 25(20): 8753-8759.
    [13] 康瑞, 杨凯. 考虑驾驶方式的车辆与航空器交叉冲突评估[J]. 中国安全生产科学技术, 2023, 19(2): 218-223.

    KANG R, YANG K. Assessment on cross conflict of vehicle and aircraft considering driving modes[J]. Journal of Safety Science and Technology, 2023, 19(2): 218-223. (in Chinese)
    [14] CHEN Y Q, YANG H, HE X, et al. Research on safety separation distance in paired approach based on monte carlo simulation[J]. International Journal of Computational Intelligence Systems, 2024, 17(1): 1-8. doi: 10.1007/s44196-023-00380-w
    [15] 卢飞, 张健, 赵二丽. 基于模糊贝叶斯和事件树的配对进近碰撞风险研究[J]. 中国安全科学学报, 2024, 34(12): 34-73.

    LU F, ZHANG J, ZHAO E L. Research on collision risk of paired approach based on fuzzy Bayesian and event tree[J]. China Safety Science Journal, 2024, 34(12): 64-73. (in Chinese)
    [16] LIN B F, CHAN Y M, FU L C, et al. Integrating appearance and edge features for sedan vehicle detection in the blind-spot area[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 737-747. doi: 10.1109/TITS.2011.2182649
    [17] PARADA R, AGUILAR A, ALONSO Z J, et al. Machine learning-based trajectory prediction for vru collision avoidance in V2X environments[C]. 2021 IEEE Global Communication-sconference(GLOBECOM), Madrid, Spain: IEEE, 2021.
    [18] 陆斯文, 方守恩, 李刚. 城市道路人车冲突和碰撞概率微观模型研究[J]. 同济大学学报(自然科学版), 2009, 37 (12): 1627-1632.

    LU S W, FANG S S, LI G. Study on microcosmic mod els of human-vehicle conflict and collision probability on urban roads[J]. Journal of Tongji University(Natural Science). 2009, 37(12): 1627-1632. (in Chinese)
    [19] ROBERT R E, JONATHAN B H. Feasibility analyses for paired approach procedures forclosely spaced parallel runways[C]. Integrated Communications, Navigation, and Surveillance Conference, Herndon, USA: IEEE, 2011.
    [20] 郑刚, 俎兆飞, 孔祚. 基于驾驶员反应时间的自动紧急制动避撞策略[J]. 重庆理工大学学报(自然学), 2020, 34 (12): 45-52.

    ZHENG G, ZU ZH F, KONG Z. Automatic emergency braking collision avoidance strategy based on driver's reaction time[J]. Journal of Chongqing University of Technology (Nature Science), 2020, 34(12): 45-52. (in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18

目录

    /

    返回文章
    返回