留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能网联环境下高速道路交通运行风险分析综述

张梦雅 杨晓光 马成元 杨洁

张梦雅, 杨晓光, 马成元, 杨洁. 智能网联环境下高速道路交通运行风险分析综述[J]. 交通信息与安全, 2025, 43(2): 137-153. doi: 10.3963/j.jssn.1674-4861.2025.02.015
引用本文: 张梦雅, 杨晓光, 马成元, 杨洁. 智能网联环境下高速道路交通运行风险分析综述[J]. 交通信息与安全, 2025, 43(2): 137-153. doi: 10.3963/j.jssn.1674-4861.2025.02.015
ZHANG Mengya, YANG Xiaoguang, MA Chengyuan, YANG Jie. A Review of Traffic Operation Risk Analysis on Highways in a Connected and Automated Environment[J]. Journal of Transport Information and Safety, 2025, 43(2): 137-153. doi: 10.3963/j.jssn.1674-4861.2025.02.015
Citation: ZHANG Mengya, YANG Xiaoguang, MA Chengyuan, YANG Jie. A Review of Traffic Operation Risk Analysis on Highways in a Connected and Automated Environment[J]. Journal of Transport Information and Safety, 2025, 43(2): 137-153. doi: 10.3963/j.jssn.1674-4861.2025.02.015

智能网联环境下高速道路交通运行风险分析综述

doi: 10.3963/j.jssn.1674-4861.2025.02.015
基金项目: 

国家自然科学基金项目 52472350

国家自然科学基金项目 52172307

广西科技重大专项子课题项目 2023AA14006-3

详细信息
    作者简介:

    张梦雅(1990—),博士研究生. 研究方向:交通安全. E-mail:2010787@tongji.edu.cn

    通讯作者:

    杨晓光(1959—),博士,教授. 研究方向:交通信息工程及控制、交通安全等. E-mail:yangxg@tongji.edu.cn

  • 中图分类号: U491.5+4

A Review of Traffic Operation Risk Analysis on Highways in a Connected and Automated Environment

  • 摘要: 高速道路交通运行风险分析对交通安全性、可靠性及实现主动管理与控制具有重要的理论意义和实用价值。网联环境为交通运行风险分析提供了全新的方法、理论与技术支持。面向高速公路和城市快速路等连续交通流,系统综述了非网联环境与网联环境下交通流运行风险分析的理论基础与关键技术,并展望了未来的研究发展方向。研究表明,非网联环境下交通运行风险分析多依赖有限非结构化数据,主要聚焦风险因素识别、事故机理解析与风险预测等问题,存在场景建模精度有限、对交通动态演变响应能力不足及实时风险感知与预测能力有待提升的问题。网联环境下,随着多源实时数据的融合应用,交通风险分析逐步向事前预测与局部交互挖掘转变,数据支撑与建模精细度有所提高。然而,在混合交通流条件下,不同类型车辆之间的交互演变规律尚未形成系统建模框架。异质驾驶决策、通信延迟与感知偏差等因素的综合作用机制尚待细化,复杂交通环境中动态要素协同演化过程的建模与解释能力亦需加强。未来研究可深化人-车-路协同演化机制建模,完善混合交通流中风险积累与传播规律的表征,强化多源感知数据融合与动态特征提取,提升交通运行风险评估的实时性与鲁棒性,推进智能推演算法与系统级验证方法的开发。通过理论深化、数据赋能与技术协同,逐步构建可解释、可预测、可干预的智能交通运行风险防控体系。

     

  • 图  1  交通运行风险的基本内涵

    Figure  1.  Basic connotations of traffic operation risks

    图  2  高速道路交通运行风险领域文献出版数量和引用量变化情况(1975—2023年)

    Figure  2.  Publications and citations in the field of traffic driving risk over time(1975—2023)

    图  3  文献关键词共现分析

    Figure  3.  Co-occurrence analysis of key words in literature

    图  4  智能网联车辆自动化水平及技术阶段

    Figure  4.  Level of automation and technological stages of CAVs

    图  5  智能网联环境下的交通流重构

    Figure  5.  Traffic flow reconstruction in connected environment

    图  6  非网联环境下运行风险分析基本问题及方法

    Figure  6.  Basic issues and methods for operational risk analysis in a non-connected environment

    图  7  交通运行风险分析理论模型脉络图

    Figure  7.  Theoretical model framework of traffic operation risk analysis

    图  8  网联环境下交通运行风险分析研究框架及愿景

    Figure  8.  Research framework and vision for traffic operation risk analysis in connected environments

    图  9  替代安全措施的分类及适用场景

    Figure  9.  Classification and applicable scenarios of surrogate safety measures

    表  1  CAV和HDV驾驶行为比较

    Table  1.   Comparison of driving behaviors between CAV and HDV

    分类 CAV HDV
    环境感知 多传感器全面感知(雷达、激光雷达、摄像头)
    实时生成高精度环境模型,适应环境变化
    依靠人类感官(视觉、听觉等)
    感知能力有限,易受环境条件(如恶劣天气)影响
    反应决策 毫秒级快速反应基于算法的理性决策行为高度一致 反应速度较慢且不稳定
    受个人经验和情绪影响,决策不可预测
    规则遵守 严格遵守交通法规持续监控并调整行为 有时违反交通规则(如闯红灯、超速等)
    行为预测 驾驶行为高度可预测遵循预定驾驶模式 行为存在较大变数驾驶模式不可预测
    协同沟通 实时车联网通信高效协同驾驶(车队行驶) 依赖视觉和听觉信号沟通协同程度有限,效率较低
    能源效率 优化加速、刹车和路径选择
    提高能源使用效率
    驾驶行为受个人习惯影响
    能源使用效率不稳定,可能浪费
    下载: 导出CSV

    表  2  智能网联车辆技术模块及其带来的优势和运行风险

    Table  2.   Modules of CAV technology and their advantages and risks

    模块 功能 优势 风险
    感知模块 通过传感器收集环境信息,识别道路、车辆、行人、交通标志等元素 “超视距”感知
    实时获知周围车辆行驶状态
    感知误差:传感器盲区、分辨率低、受环境影响大、信息交互延时长
    交互预测失败:自动驾驶预测人类行为错误
    复杂的道路环境:道路环境影响自动驾驶的感知与决策
    规划模块 基于感知模块提供的信息进行路径规划和决策制定 确定且可预测的驾驶行为
    形成小车间距/ 时距的队列行驶,提高车道容量3倍以上[6]
    协同完成转弯、倾斜、避障、紧急制动等驾驶行为
    决策与规划复杂性:算法与人类直觉差异、环境预测不准确
    复杂驾驶行为:自动驾驶与人类驾驶行为差异可能增加速度波动
    控制模块 依据规划结果执行具体动作,如调整车速、转向等 充当控制器,消除拥堵区域的走走停停行为
    协作自适应巡航控制的平滑效应
    控制系统的执行错误:硬件故障、软件漏洞
    反应时间差异:自动驾驶与人类驾驶反应时间不一致,影响交通流平滑性
    通信依赖性:V2V或V2I通信不稳定可能导致局部交通流中断
    下载: 导出CSV

    表  3  非网联环境下数据的类别

    Table  3.   Categories of data in non- connected environments

    类型 数据内容 应用 局限
    历史事故数据 事故数事故类型事故频率严重程度 交通事故发生情况的详细统计分析 受信息收集主观性影响,导致数据质量差;收集周期长,时间不稳定,无法及时获取
    交通安全评估和预测 未观察到的异质性、时空相关性弱,数据分析受限
    提出预防措施,改善交通安全 伦理问题,需要发生多次事故才能总结出对应的预防措施[11]
    交通流数据 速度流量地理位置 交通流量和特征的快速获取和分析 数据精度不高(5~ 30 min间隔的集计数据),可能存在滞后性
    评估交通拥堵情况和交通状况的变化 数据处理和分析复杂,可能受到设备故障和覆盖范围限制的影 [12]
    交通流量预测和交通管理措施,提供实时的交通情况和改进措施
    下载: 导出CSV

    表  4  非网联环境与网联环境交通流数据对比

    Table  4.   A comparison of traffic flow data between non-connected and connected environments

    类别 特点 采集方式 数据特点 优点 缺点
    非网联环境 断面集计静态 线圈、微波、地磁、超声波、交通调查 固定断面的流量、速度和占有率,部分要素可计算 不受环境影响 精度粗、布点有限、建设运维成本高、数据易丢失
    网联环境 个体连续动态 ETC、高精度地图、车辆轨迹、视频监控、无人机、互联网数据 广域连续的个体车辆轨迹、路径,全要素可计算 粒度细、范围广、成本低、可靠性高、更精准、不易丢失 更新频率受影响
    下载: 导出CSV

    表  5  网联环境下高速道路交通运行风险分析研究理论及关键技术

    Table  5.   Research theories and key technologies for traffic operation risk analysis on highways in a connected environment

    理论维度 内涵 研究重点 关键技术
    维度一:感 风险感知 全息:融合卡口、视频、微波等多源感知信息,实现高速道路精准状态感知 互联网车辆轨迹电警卡口高清视频
    数据库架构
    多源数据融合大数据分析研判视频图像处理可计算路网
    维度二:辩 风险辨识 自主:基于交通拥堵、事故前兆(冲突),结合高精度交通流数据,实现交通拥堵、事故风险动态辨识 路网路径状态
    人-车-路关联关系
    交通事件检测
    路径重构计算以往模型+智能算法
    异常数据识别视频图像处理风险实时预测
    维度三:评 风险评估 精准:统计分析模型和机器学习模型进行风险概率和等级评估 评估指标体系
    问题诊断方法
    智能优化算法
    传统理论模型+ 多源数据融合在线交通仿真数据驱动控制
    维度四:管 风险防控 协同:针对复杂场景,实现动态限速、流量控制的动态车道管理等主动防控 全场景管控能力
    多系统协同能力
    全业务打通能力
    PaaS平台即服务模块化开发
    AI+预案生成在线交通仿真
    下载: 导出CSV

    表  6  基于仿真模拟的风险评估研究摘要

    Table  6.   Summary of studies based on simulation methods

    研究类别 文献 仿真工具 场景 评估内容 参数
    交通冲突的风险评估 [40] VISSIM、API 基本路段 纵向和横向冲突 渗透率25%~100%
    [41] VISSIM、SSAM 环岛 冲突数量、延误 渗透率50%~100%
    [42] MATLAB 直线坡道 追尾冲突、缩队行驶 速度差、车型、乘车距离
    [43] SUMO、Unity3D 基本路段 自由换道行为、车辆交互 网联环境设置、驾驶人特性、加速度、换道间距
    驾驶行为的风险评估 [44] PreScan 多种场景 横、纵向驾驶模式 L0-L5级CAV、渗透率、渗透率、交通密度
    [45] CARLA 基本路段 安全行为规划 渗透率、L2-L4级CAV、平均延误时间和行程时间
    [46] VISSIM 合流和分流路段 车队横、纵向驾驶行为 渗透率、L2-L4级CAV、平均延误时间和行程时间
    基于交通管理策略的风险评估 [47] MATLAB 瓶颈路段 可变限速策略 车辆数、渗透率、总行程时间
    [48] PreScanN、MATLAB 主干道 变速策略 车队组合、加速度、车间距
    [49] VISSIM、MATLAB、Ca2X 入口匝道 匝道控制方法和渐进限速控制方法 平均速度、延迟和流量
    [50] SUMO 出入口匝道 深度强化学习算法、拥堵模式、安全性、效率和系统适应度 渗透率、流量、行程时间、碰撞风险、加速度
    基于新开发模拟框架的风险评估 [51] VISSIM 基本路段和匝道 外部驱动模型、效率和安全 渗透率、车型、流量
    [52] CARSIM/SIMULINK 基本路段 协作并分布式控制,执行器延迟和不利通信条件 车队、加速度、总通信时间延迟
    [53] PreScanN、MATLAB 基本路段 博弈论轨迹规划框架;安全、舒适和效率 车间距、横纵向加速度、出行成本
    下载: 导出CSV

    表  7  智能网联环境下风险防控应用场景

    Table  7.   Risk prevention and control application scenarios in a connected and automated environment

    类别 应用场景
    交通安全类 车辆失控预警 异常车辆提醒
    恶劣天气预警 道路危险状况提示
    前方拥堵预警 二次事故预警
    车内标牌 逆向超车预警
    交通效率类 特殊车辆识别/提醒 超数据信息辅助
    车速引导 编队行驶
    潮汐/动态车道行驶 限速提醒
    交通信息及路径规划 电子不停车收费
    信息服务类 充电桩目的指引导 自动停车引导及控制
    车辆远程诊断、维修保养体术 智能移动设备与汽车功能交互
    下载: 导出CSV

    表  8  非网联环境与网联环境的交通运行风险分析方法对比

    Table  8.   Comparison of risk analysis methods in non-connected and connected environments

    类别 感知能力 风险指标 风险评估 风险防控
    非网联环境 小样本数据 事后指标 统计分析模型 传统设施
    静态告知
    固定式信息采集
    线圈+地磁为主
    断面、时段集计流/密/速
    排队、延误、行程时间等参数提取交通状态识别 对象模糊化
    基于路段流量,方案模式化
    模型驱动
    子系统间交互难以量化
    协同程度低
    多源大数据 事前替代 机器学习模型 新型智能设备和车载终端
    动态引导
    网联环境 移动传感器
    ETC数据、互联网数据、路测数据、车载数据为主个体车辆轨迹/路径(抽样)感知条件和要求提高
    基于轨迹和路径的交通状态完整刻画交通状态机理认知冲突理论 基于关键路径,对象精准化基于路径流量,方案精细化评价-诊断-优化闭环 数据+模型驱动
    子系统间交互精确掌握
    多系统高效协同
    下载: 导出CSV
  • [1] 杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72.

    YANG L, ZHAO X M, WU G H, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. (in Chinese)
    [2] On-Road Automated Vehicle Standards Committee. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems[J]. SAE Standard J, 2014, 3016: 1-6.
    [3] 杨晓光, 胡仕星月, 张梦雅. 智能高速公路交通应用技术发展综述[J]. 中国公路学报, 2023, 36(10): 142-164.

    YANG X G, HU S X Y, ZHANG M Y, et al. Development of intelligent motorway traffic application technologies: a review[J]. China Journal of Highway and Transport, 2023, 36 (10): 142-164. (in Chinese)
    [4] FAGHIHIAN H, SARGOLZAEI A. Energy efficiency of connected autonomous vehicles: a review[J]. Electronics, 2023, 12(19): 4086.
    [5] 张立成, 张婷, 蔡学锐, 等. 驾驶行为分类方法及量化评估综述[J]. 汽车技术, 2024(5): 1-14.

    ZHANG L C, ZHANG T, CAI X R, et al. Review of classification methods and quantitative evaluation of driving behavior[J]. Automobile Technology, 2024(5): 1-14. (in Chinese)
    [6] SHEN J, KAMMARA E K H, DU L. Fully distributed optimization-based CAV platooning control under linear vehicle dynamics[J]. Transportation Science, 2022, 56(2): 381-403.
    [7] YAO Z, JIANG H, CHENG Y, et al. Integrated schedule and trajectory optimization for connected automated vehicles in a conflict zone[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(3): 1841-1851.
    [8] PLOEG J, SEMSAR-KAZEROONI E, LIJSTER G, et al. Graceful degradation of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(1): 488-497.
    [9] 秦严严, 罗钦中, 贺正冰, 等. 网联自动驾驶车辆混合交通流专用道管控方法[J]. 交通运输工程学报, 2023, 23(3): 221-231.

    QIN Y Y, LUO Q Z, HE Z B, et al. Management and control method of dedicated lanes for mixed traffic flows with connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 221-231. (in Chinese)
    [10] CHENG R, LYU H, ZHENG Y, et al. Modeling and stability analysis of cyberattack effects on heterogeneous intelligent traffic flow[J]. Physica A: Statistical Mechanics and its Applications, 2022, 604: 127941.
    [11] ELAMRANI ABOU ELASSAD Z, MOUSANNIF H, AL MOATASSIME H. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study[J]. Traffic Injury Prevention, 2020, 21(3): 201-218.
    [12] ISLAM Z, ABDEL-ATY M. Traffic conflict prediction using connected vehicle data[J]. Analytic Methods in Accident Research, 2023, 39: 100275.
    [13] AARTS L, VAN SCHAGEN I. Driving speed and the risk o road crashes: a review[J]. Accident Analysis & Prevention, 2006, 38(2): 215-224.
    [14] QUDDUS M. Exploring the relationship between average speed, speed variation, and accident rates using spatial statistical models and GIS[J]. Journal of Transportation Safety & Security, 2013, 5(1): 27-45.
    [15] 谢济铭, 秦雅琴, 彭博, 等. 多车道交织区车辆跟驰行为风险判别与冲突预测[J]. 交通运输系统工程与信息, 2021, 21 (3): 131-139.

    XIE J M, QIN Y Q, PENG B, et al. Risk discrimination and conflict prediction of vehicle-following behavior in multi-lane weaving sections[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (3): 131-139. (in Chinese)
    [16] 孙剑, 孙杰. 城市快速路实时交通流运行安全主动风险评估[J]. 同济大学学报: 自然科学版, 2014, 42(6): 873-879.

    SUN J, SUN J, et al. Proactive assessment of real-time traffic flow accident risk on urban expressway[J]. Journal o Tongji University(Natural Science), 2014, 42(6): 873-879 (in Chinese)
    [17] LIU T, LI Z, LIU P, et al. Using empirical traffic trajectory data for crash risk evaluation under three-phase traffic theory framework[J]. Accident Analysis & Prevention, 2021, 157 106191.
    [18] KATRAKAZAS C, THEOFILATOS A, ISLAM M A, et al Prediction of rear-end conflict frequency using multiple-location traffic parameters[J]. Accident Analysis & Prevention, 2021, 152: 106007.
    [19] MOHAMMADIAN S, HAQUE M M, ZHENG Z, et al. Integrating safety into the fundamental relations of freeway traffic flows: a conflict-based safety assessment framework[J] Analytic Methods in Accident Research, 2021, 32: 100187.
    [20] OH C, KIM T. Estimation of rear-end crash potential using vehicle trajectory data[J]. Accident Analysis & Prevention, 2010, 42(6): 1888-1893.
    [21] WANG L, ZOU L, ABDEL-ATY M, et al. Expressway rear-end crash risk evolution mechanism analysis under different traffic states[J]. Transportmetrica B: Transport Dynamics, 2023, 11(1): 510-527.
    [22] 沈传亮, 肖啸, 童言, 等. 智能汽车行驶风险评估综述[J] 汽车文摘, 2024(8): 1-8.

    SHEN C L, XIAO X, TONG Y, et al. A review of driving risk assessment for intelligent vehicles[J]. Automotive Digest, 2024(8): 1-8. (in Chinese)
    [23] 魏丹. 基于机器学习的交通状态判别与预测方法[D]. 长春: 吉林大学, 2020.

    WEI D. Research on methods for traffic state ldentification and prediction based on machine learning[D]. Changchun: Jilin University, 2020. (in Chinese)
    [24] 寇敏, 张萌萌, 赵军学, 等. 道路交通安全风险辨识与分析方法综述[J]. 交通信息与安全, 2022, 40(6): 22-32. doi: 10.3963/j.jssn.1674-4861.2022.06.003

    KOU M, ZHANG M M, ZHAO J X, et al. A review of identification and analysis methods for road safety risk[J]. Journal of Transport Information and Safety, 2022, 40(6): 22-32. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.003
    [25] 王雪松, 吴杏薇, 金昱. 宏观交通安全建模研究与安全影响因素分析[J]. 同济大学学报: 自然科学版, 2012, 40(11): 1627-1633.

    WANG X S, WU X W, JIN Y. Macro level safety modeling and impact factor analysis[J]. Journal of Tongji University (Natural Science), 2012, 40(11): 1627-1633. (in Chinese)
    [26] 郭淼, 赵晓华, 姚莹, 等. 基于驾驶行为和交通运行状态的事故风险研究[J]. 华南理工大学学报: 自然科学版, 2022, 50(9): 29-38.

    GUO M, ZHAO X H, YAO Y, et al. Study on accident risk based on driving behavior and traffic operating status[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(9): 29-38. (in Chinese)
    [27] ARUN A, HAQUE M M, WASHINGTON S, et al. A systematic review of traffic conflict-based safety measures with a focus on application context[J]. Analytic Methods in Accident Research, 2021, 32: 100185.
    [28] MAHMUD S S, FERREIRA L, HOQUE M S, et al. Reviewing traffic conflict techniques for potential application to developing countries[J]. Journal of Engineering Science and Technology, 2018, 13(6): 1869-1890.
    [29] WANG C, XIE Y, HUANG H, et al. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling[J]. Accident Analysis & Prevention, 2021, 157: 106157.
    [30] GU X, CAI Q, LEE J, et al. Proactive crash risk prediction modeling for merging assistance system at interchange merging areas[J]. Traffic injury prevention, 2020, 21(3): 234-40.
    [31] WANG J, WU J, ZHENG X, et al. Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C: Emerging Technologies, 2016, 72: 306-324.
    [32] MULLAKKAL-BABU F A, WANG M, HE X, et al. Probabilistic field approach for motorway driving risk assessment[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102716.
    [33] GUéRIAU M, DUSPARIC I. Quantifying the impact of connected and autonomous vehicles on traffic efficiency and safety in mixed traffic[C]. 23th International Conference on Intelligent Transportation Systems, Yunani, Eropa: IEEE, 2020.
    [34] VIRDI N, GRZYBOWSKA H, WALLER S T, et al. A safety assessment of mixed fleets with connected and autonomous vehicles using the surrogate safety assessment module[J]. Ac-cident Analysis & Prevention, 2019, 131: 95-111.
    [35] SAUNIER N, SAYED T. Probabilistic framework for automated analysis of exposure to road collisions[J]. Transportation Research Record, 2008, 2083(1): 96-104.
    [36] ZHENG L, SAYED T, ESSA M. Bayesian hierarchical modeling of the non-stationary traffic conflict extremes for crash estimation[J]. Analytic Methods in Accident Research, 2019, 23: 100100.
    [37] LI H, ZHANG J, SUN X, et al. A survey of vehicle group behaviors simulation under a connected vehicle environment[J]. Physica A: Statistical Mechanics and its Applications, 2022, 603: 127816.
    [38] QU X, YANG Y, LIU Z, et al. Potential crash risks of expressway on-ramps and off-ramps: a case study in Beijing China[J]. Safety Science, 2014, 70: 58-62.
    [39] GE H, BO Y, ZANG W, et al. Literature review of driving risk identification research based on bibliometric analysis[J]. Journal of Traffic and Transportation Engineering(English edition), 2023, 10(4): 560-577.
    [40] PAPADOULIS A, QUDDUS M, IMPRIALOU M. Evaluating the safety impact of connected and autonomous vehicles on motorways[J]. Accident Analysis & Prevention, 2019, 124: 12-22.
    [41] MORANDO M M, TIAN Q, TRUONG L T, et al. Studying the safety impact of autonomous vehicles using simulation-based surrogate safety measures[J]. Journal of Advanced Transportation, 2018, 4(1): 6135183.
    [42] 陈丰, 涂志敏, 陈涛. 基于ITC的自动驾驶卡车编队跟驰安全性评价[J]. 长安大学学报: 自然科学版, 2019, 39(5): 97-105.

    CHEN F, TU Z M, CHEN T. Evaluation based on ITC of rear-end collision safety of automated truck platoons[J]. Journal of Chang' an University (Natural Science Edition), 2019, 39(5): 97-105. (in Chinese)
    [43] 钱泽昊, 潘新福, 范欣炜, 等. 基于虚拟现实的网联环境下驾驶人自由换道行为特征与安全分析[J]. 交通信息与安全, 2024, 42(2): 36-48. doi: 10.3963/j.jssn.1674-4861.2024.02.004

    QIAN Z H, PAN X F, FAN X W, et al. Characteristics and a safety analysis of driver's free lane-changing behavior in a virtual reality-based connected environment[J]. Journal of Transport Information and Safety, 2024, 42(2): 36-48. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.02.004
    [44] PARK Y, YANG J H, LIM S. Development of complexity index and predictions of accident risks for mixed autonomous driving levels[C]. 47th International IEEE Conference on Systems, Man, and Cybernetics, Miyazaki, Japan: IEEE, 2018.
    [45] HAN S, ZHOU S, WANG J, et al. A multi-agent reinforcement learning approach for safe and efficient behavior planning of connected autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 25(5): 3654-3670.
    [46] ELEFTERIADOU L, MARTIN B, SIMMERMAN T, et al. Using microsimulation to evaluate the effects of advanced vehicle technologies on congestion[R]. Gainesville: University of Florida. Center for Multimodal Solutions for Congestion Mitigation, 2011.
    [47] LI Y, SHI Y, LEE J, et al. Safety effects of connected and automated vehicle-based variable speed limit control near Freeway Bottlenecks considering Driver's Heterogeneity[J]. Journal of Advanced Transportation, 2022(1): 7996623.
    [48] WANG H, LAI J, HU J. Trajectory planner for platoon lane change[C]. 32th IEEE Intelligent Vehicles Symposium Workshops, Nagoya, Japan: IEEE, 2021.
    [49] XIE Y, ZHANG H, GARTNER N H, et al. Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment[J]. Journal of Intelligent Transportation Systems, 2017, 21(2): 136-147.
    [50] ZHU L, LU L, WANG X, et al. Operational characteristics of mixed-autonomy traffic flow on the freeway with on-and off-ramps and weaving sections: an RL-based approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 13512-13525.
    [51] FANG X, LI H, TETTAMANTI T, et al. Effects of automated vehicle models at the mixed traffic situation on a motorway scenario[J]. Energies, 2022, 15(6): 1-15.
    [52] MA F, WANG J, ZHU S, et al. Distributed control of cooperative vehicular platoon with nonideal communication condition[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8207-8220.
    [53] YAN Y, PENG L, SHEN T, et al. A multi-vehicle game-theoretic framework for decision making and planning of autonomous vehicles in mixed traffic[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(11): 4572-4587.
    [54] ABDEL-ATY M, WANG L. Implementation of variable speed limits to improve safety of congested expressway weaving segments in microsimulation[J]. Transportation Research Procedia, 2017, 27: 577-584.
    [55] STEVANOVIC A, STEVANOVIC J, KERGAYE C. Optimization of traffic signal timings based on surrogate measures of safety[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 159-178.
    [56] 白如玉, 焦朋朋, 陈越, 等. 基于强化学习的车道级可变限速控制策略[J]. 交通信息与安全, 2024, 42(1): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.01.012

    BAI R Y, JIAO P P, CHEN Y, et al. Differential variable speed limit control strategy based on reinforcement learning[J]. Journal of Transport Information and Safety, 2024, 42 (1): 105-114. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.012
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  32
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-02
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回