| Citation: | WU Jingqiong, TIAN Na, CHEN Ziwei, DIAN Ran, LI Yunqi. Trajectory Planning and Energy Consumption Evaluation Model of UAVs in Plateau and Mountainous Areas[J]. Journal of Transport Information and Safety, 2025, 43(4): 98-109. doi: 10.3963/j.jssn.1674-4861.2025.04.010 |
| [1] |
HOMIER V, BROUARD D, NOLAN M, et al. Drone versus ground delivery of simulated blood products to an urban trauma center: the Montreal Medi-Drone pilot study[J]. Journal of Trauma and Acute Care Surgery, 2021, 90(3): 515-521. doi: 10.1097/TA.0000000000002961
|
| [2] |
WILTSHIRE M, BOXSHALL J, MILNE J, et al. The effects of drone transportation on blood component quality: a prospective randomised controlled laboratory study[J]. British Journal of Haematology. 2024, 205(5): 2022-2030. doi: 10.1111/bjh.19666
|
| [3] |
胡志华, 魏月荷, 田曦丹. 海岛无人机多模式应急配送模型与算法研究[J]. 大连理工大学学报, 2024, 64(6): 649-660.
HU Z H, WEI Y H, TIAN X D. Island drone multi-mode emergency delivery model and algorithm research[J]. Journal of Dalian University of Technology, 2024, 64(6): 649-660. (in Chinese)
|
| [4] |
徐红艳, 柳国梁, 刘华琼. 县-村配送模式下无人机三维路径规划[J]. 山东交通学院学报, 2024, 32(4): 14-19, 56.
XU H Y, LIU G L, LIU H Q. Three-dimensional path planning for drones under county-village delivery mode[J]. Journal of Shandong Jiaotong University, 2024, 32(4): 14-19, 56. (in Chinese)
|
| [5] |
刘文倩, 单梁, 张伟龙, 等. 复杂环境下基于改进Informed RRT的无人机路径规划算法[J]. 上海交通大学学报, 2024, 58(4): 511-524.
LIU W Q, SHAN L, ZHANG W L, et al. UAV path planning algorithm based on improved informed RRT in complex environments[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 511-524. (in Chinese)
|
| [6] |
韩韧, 高煜杰, 张生. 无人机辅助边缘计算环境下的路径策略研究[J]. 建模与仿真, 2023, 12(6): 5949-5958.
HAN R, GAO Y J, ZHANG S. Research on path strategy in UAV-assisted edge computing environments[J]. Modeling and Simulation, 2023, 12(6): 5949-5958. (in Chinese)
|
| [7] |
张红蕾, 盛志超, 叶林, 等. 基于多传感器融合的无人机自主避障方法[J]. 激光杂志, 2024, 45(1): 229-235.
ZHANG H L, SHENG Z Z, YE L, et al. Autonomous obstacle avoidance method for UAVs based on multi-sensor fusion[J]. Laser Journal, 2024, 45(1): 229-235. (in Chinese)
|
| [8] |
CHIARADONNA S, JEVTI P, LANCHIER N. Cyber risk loss distribution for various scale drone delivery systems[J]. Risk Sciences, 2025, 1(10): 100009.
|
| [9] |
余子杰, 郑征, 李清东, 等. 基于深度强化学习的太阳能无人机航迹规划[J]. 航空学报, 2025, 46(12): 275-295.
YU Z J, ZHENG Z, LI Q D, et al. Trajectory planning for solar-powered UAVs based on deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 275-295. (in Chinese)
|
| [10] |
邓文乾, 赖颖杰, 张世昂, 等. 面向农田环境的农业多机器人协同技术研究进展[J]. 中国农机化学报, 2024, 45(10): 289-297.
DENG W Q, LAI Y J, ZHANG S A, et al. Research progress on cooperative technology of agricultural multi-robots in farmland environments[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(10): 289-297. (in Chinese)
|
| [11] |
ALEJANDRO P, DANIEL R, EURICO P, et al. Q-Learning based system for path planning with unmanned aerial vehicles swarms in obstacle environments[J]. Expert Systems With Applications, 2024, 235(1): 121240.
|
| [12] |
ZHUGE S, XU X, HE Y, et al. 3-D motion trajectory measurement for the target through a multi-UAVs system[J]. Measurement, 2022, 204(11): 112088.
|
| [13] |
IVIC S, CRNKOVIC B, GRBCIC L, et al. Multi-UAV trajectory planning for 3D visual inspection of complex structures[J]. Automation in Construction, 2023, 147 (3): 104709.
|
| [14] |
陈朋, 汤粤生, 俞天纬, 等. 三维场景的实时无人机航迹规划方法[J]. 小型微型计算机系统, 2020, 41(9): 1800-1805.
CHEN P, TANG Y S, YU T W, et al. Real-time UAV trajectory planning method for 3D scenes[J]. Journal of Small and Micro Computers, 2020, 41(9): 1800-1805. (in Chinese)
|
| [15] |
付兴武, 胡洋. 基于改进粒子群算法的三维路径规划[J]. 电光与控制, 2021, 28(3): 86-89.
FU X W, HU Y. Three-dimensional path planning based on improved particle swarm optimization algorithm[J]. Electronics Optics & Control, 2021, 28(3): 86-89. (in Chinese)
|
| [16] |
黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人机路径规划[J]. 计算机应用, 2021, 41(2): 390-397.
HUANG S Z, TIAN J W, QIAO L, et al. UAV path planning based on improved genetic algorithm[J]. Computer Applications, 2021, 41(2): 390-397. (in Chinese)
|
| [17] |
黄鹤, 吴琨, 王会峰, 等. 基于改进飞蛾扑火算法的无人机低空突防路径规划[J]. 中国惯性技术学报, 2021, 29(2): 256-263.
HUANG H, WU K, WANG H F, et al. UAV low-altitude penetration path planning based on improved moth flame optimization algorithm[J]. Journal of China Inertial Technology, 2021, 29(2): 256-263. (in Chinese)
|
| [18] |
邹泽海, 郑恩辉, 丁凯, 等. 低空自主无人机数字孪生系统设计[J]. 现代电子技术, 2024, 47(13): 123-128.
ZOU Z H, ZHENG E H, DING K, et al. Design of low-altitude autonomous UAV digital twin system[J]. Modern Electronics Technique, 2024, 47(13): 123-128. (in Chinese)
|
| [19] |
景会成, 曹育铭, 葛超, 等. 基于混合策略改进蜣螂优化算法的无人机三维路径规划[J]. 现代电子技术, 2024, 47 (13): 144-152.
JING H C, CAO Y M, GE C, et al. UAV three-dimensional path planning based on hybrid strategy improved dung beetle optimization algorithm[J]. Modern Electronics Technique, 2024, 47(13): 144-152. (in Chinese)
|
| [20] |
王海群, 宋国章, 葛超. 基于改进蜣螂算法的无人机三维路径规划[J]. 电光与控制, 2024, 31(11): 55-61, 82.
WANG H Q, SONG G Z, GE C. UAV three-dimensional path planning based on improved dung beetle algorithm[J]. Electronics Optics & Control, 2024, 31(11): 55-61, 82. (in Chinese)
|
| [21] |
PENG Q, FU X, LIN F, et al. Multi-scale convolutional neural networks optimized by elite strategy dung beetle optimization algorithm for encrypted traffic classification[J]. Expert Systems With Applications, 2024, 264(10): 125729.
|
| [22] |
XIONG M, ZHENG S, LIU W, et al. A rate of penetration (ROP)prediction method based on improved dung beetle optimization algorithm and BiLSTM-SA[J]. Scientific Reports, 2024, 14(1): 25856. doi: 10.1038/s41598-024-75703-8
|
| [23] |
栾孝驰, 汤捷中, 沙云东. 基于蜣螂算法优化深度极限学习机的中介轴承故障诊断方法[J]. 振动与冲击, 2024, 43 (21): 96-106, 127.
LUAN X C, TANG J Z, SHA Y D. Fault diagnosis method of intermediate bearing based on dung beetle algorithm optimized deep extreme learning machine[J]. Journal of Vibration and Shock, 2024, 43(21): 96-106, 127. (in Chinese)
|
| [24] |
吴亚中, 陈璐, 马强, 等. 多策略增强的蜣螂优化算法及其工程应用[J]. 华中科技大学学报(自然科学版), 2025, 53 (2): 95-103.
WU Y Z, CHEN L, MA Q, et al. Multi-strategy enhanced dung beetle optimization algorithm and its engineering application[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2025, 53(2): 95-103. (in Chinese)
|
| [25] |
胡丹, 崔喻婷, 周海河, 等. 改进蜣螂算法优化工艺参数[J/OL]. 上海交通大学学报, (2024-8-13)[2024-12-12].
HU D, CUI Y T, ZHOU H H, et al. Improved dung beetle algorithm for optimizing process parameters[J/OL]. Journal of Shanghai Jiao Tong University, (2024-8-13)[2024-12-12].
|
| [26] |
ZHANG P, XU C, HU C, et al. Coordinate transformations in satellite navigation systems[C]. Advances in Electronic Engineering, Communication and Management, Berlin, Germany: Springer, 2012.
|
| [27] |
张笑妍, 钱程, 梁小溪, 等. 山地环境下无人机自主最优轨迹规划方法[J]. 无人系统技术, 2024, 7(5): 24-32.
ZHANG X Y, QIAN C, LIANG X X, et al. Autonomous optimal trajectory planning method for UAVs in mountainous environments[J]. Unmanned Systems Technology, 2024, 7 (5): 24-32. (in Chinese)
|