| Citation: | SHAO Zeyuan, YIN Yong, LYU Hongguang, JING Qianfeng, WANG Haichao. A High-precision Tracker for Small Objects in Intelligent Vessel Navigation Scenarios[J]. Journal of Transport Information and Safety, 2025, 43(4): 75-85. doi: 10.3963/j.jssn.1674-4861.2025.04.008 |
| [1] |
娄月新, 金强, 魏明泽, 等. 海上自主水面船舶自主运行模式及未来发展分析[J]. 船海工程, 2025, 54(1): 71-75, 80.
LOU Y X, JIN Q, WEI M Z, et al. Analysis of the autonomous operation mode and future development for maritime autonomous surface ship[J]. Ship & Ocean Engineering, 2025, 54(1): 71-75, 80. (in Chinese)
|
| [2] |
胡一鹏, 闫昭琨, 刘佳仑, 等. 智能船艇虚实融合测试验证技术现状与展望[J]. 船舶工程, 2022, 44(4): 4-13.
HU Y P, YAN Z K, LIU J L, et al. Current status and prospects of virtual-real fusion test and verification technology for intelligent vessels[J]. Ship Engineering, 2022, 44(4): 4-13. (in Chinese)
|
| [3] |
THOMBRE S, ZHAO Z, RAMM-SCHMIDT H, et al. Sensors and AI techniques for situational awareness in autonomous ships: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 64-83. doi: 10.1109/TITS.2020.3023957
|
| [4] |
LYU H, SHAO Z, CHENG T, et al. Sea-surface object detection based on electro-optical sensors: a review[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 190-216. doi: 10.1109/MITS.2022.3198334
|
| [5] |
CHEN X, LING J, WANG S, et al. Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework[J]. The Journal of Navigation, 2021, 74 (6): 1252-1266. doi: 10.1017/S0373463321000540
|
| [6] |
CHEN X, XU X, YANG Y, et al. Visual ship tracking via a hybrid kernelized correlation filter and anomaly cleansing framework[J]. Applied Ocean Research, 2021, 106: 102455. doi: 10.1016/j.apor.2020.102455
|
| [7] |
CHEN Z, CHEN D, ZHANG Y, et al. Deep learning for autonomous ship-oriented small ship detection[J]. Safety Science, 2020, 130: 104812. doi: 10.1016/j.ssci.2020.104812
|
| [8] |
LIU R W, YUAN W, CHEN X, et al. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system[J]. Ocean Engineering, 2021, 235: 109435. doi: 10.1016/j.oceaneng.2021.109435
|
| [9] |
SHAO Z, LYU H, YIN Y, et al. Multi-scale object detection model for autonomous ship navigation in maritime environment[J]. Journal of Marine Science and Engineering, 2022, 10 (11): 1783. doi: 10.3390/jmse10111783
|
| [10] |
王宁, 吴伟, 王元元, 等. 多特征融合的无人艇视觉目标长时相关鲁棒跟踪[J]. 中国舰船研究, 2024, 19(1): 62-74.
WANG N, WU W, WANG Y Y, et al. Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion[J]. Chinese Journal of Ship Research, 2024, 19(1): 62-74. (in Chinese)
|
| [11] |
陈惠红, 胡耀民, 刘世明. 交互多模粒子滤波多特征自适应融合的船舶视觉跟踪[J]. 舰船科学技术, 2018, 40(4): 133-135.
CHEN H H, HU Y M, LIU S M. Interactive multi-mode particle filter multi feature adaptive fusion for ship vision tracking[J]. Ship Science and Technology, 2018, 40(4): 133-135. (in Chinese)
|
| [12] |
BLOISI D, IOCCHI L, FIORINI M, et al. Automatic maritime surveillance with visual target detection[C]. The International Defense and Homeland Security Simulation Workshop, Rome, Italy: University of Genoa, 2011.
|
| [13] |
CHEN X, WANG S, SHI C, et al. Robust ship tracking via multi-view learning and sparse representation[J]. The Journal of Navigation, 2019, 72(1): 176-192. doi: 10.1017/S0373463318000504
|
| [14] |
TIAN W, LAUER M, CHEN L. Online multi-object tracking using joint domain information in traffic scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (1): 374-384.
|
| [15] |
郭晓晗, 彭理群, 马定辉. 基于车联网BSM数据与路侧视频融合的港口集装箱卡车碰撞危险辨识方法[J]. 交通信息与安全, 2023, 41(1): 1-12. doi: 10.3963/j.jssn.1674-4861.2023.01.001
GUO X H, PENG L Q, MA D H. A method of identifying collision risk of container trucks in port terminal areas under an integrated connected vehicle BSM and roadside video surveillance data[J]. Journal of Transport Information and Safety, 2023, 41(1): 1-12. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.001
|
| [16] |
HASSAN S, MUJTABA G, RAJPUT A, et al. Multi-object tracking: a systematic literature review[J]. Multimedia Tools and Applications, 2024, 83(14): 43439-43492.
|
| [17] |
马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010
MA H W, ZHANG D, LI Y L, et al. A ship detection algorithm for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.010
|
| [18] |
张立国, 赵嘉士, 金梅, 等. 改进YOLOX在近岸船舶检测中的应用[J]. 计量学报, 2024, 45(1): 30-37.
ZHANG L G, ZHAO J S, JIN M, et al. Application of improved YOLOX in inshore ship inspection[J]. Acta Metrologica Sinica, 2024, 45(1): 30-37. (in Chinese)
|
| [19] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
|
| [20] |
周欣, 徐培哲, 李堃, 等. 基于损失函数与注意力机制改进的YOLOv8火焰目标检测算法优化研究[J]. 船海工程, 2025, 54(2): 19-25.
ZHOU X, XU P Z, LI K, et al. Optimization of YOLOv8 flame target detection algorithm based on improved loss function and attention mechanism[J]. Ship & Ocean Engineering, 2025, 54(2): 19-25. (in Chinese)
|
| [21] |
BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]. The IEEE International Conference on Image Processing, Phoenix, USA: IEEE, 2016.
|
| [22] |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]. The IEEE International Conference on Image Processing, Beijing, China: IEEE, 2017.
|
| [23] |
ZHANG Y, SUN P, JIANG Y, et al. Bytetrack: multi-object tracking by associating every detection box[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel: Springer Nature Switzerland, 2022.
|
| [24] |
AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[EB/OL]. (2022-07-07)[2025-03-01].
|
| [25] |
SHAO Z, YIN Y, LYU H, et al. An efficient model for small object detection in the maritime environment[J]. Applied Ocean Research, 2024, 152: 104194. doi: 10.1016/j.apor.2024.104194
|
| [26] |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
|
| [27] |
YANG F, ODASHIMA S, MASUI S, et al. Hard to track objects with irregular motions and similar appearances? make it easier by buffering the matching space[C]. The IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA: IEEE, 2023.
|
| [28] |
Jiangsu Automation Research Institute. Jari maritime tracking dataset. [DB/OL]. (2022-09-30)[2025-03-01].
|
| [29] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland: Springer Nature Switzerland, 2014.
|
| [30] |
XU Y, OSEP A, BAN Y, et al. How to train your deep multi-object tracker[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE, 2020.
|
| [31] |
LIU S, LI X, LU H, et al. Multi-object tracking meets moving UAV[C]. The IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, USA: IEEE, 2022.
|