Volume 43 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
SHAO Zeyuan, YIN Yong, LYU Hongguang, JING Qianfeng, WANG Haichao. A High-precision Tracker for Small Objects in Intelligent Vessel Navigation Scenarios[J]. Journal of Transport Information and Safety, 2025, 43(4): 75-85. doi: 10.3963/j.jssn.1674-4861.2025.04.008
Citation: SHAO Zeyuan, YIN Yong, LYU Hongguang, JING Qianfeng, WANG Haichao. A High-precision Tracker for Small Objects in Intelligent Vessel Navigation Scenarios[J]. Journal of Transport Information and Safety, 2025, 43(4): 75-85. doi: 10.3963/j.jssn.1674-4861.2025.04.008

A High-precision Tracker for Small Objects in Intelligent Vessel Navigation Scenarios

doi: 10.3963/j.jssn.1674-4861.2025.04.008
  • Received Date: 2025-03-07
  • Tracking small sea-surface objects is crucial for environmental perception in intelligent vessels. However, due to the limited feature information of small objects and the motion-induced instability of shipborne cameras, existing methods still face challenges in tracking accuracy and stability. To address these issues and enhance the performance of small sea-surface objects tracking, a novel tracker named SeaMicroTracker is developed. The tracker integrates deep learning-based object detection with an optimized object association algorithm to enhance robustness. Specifically, for object detection, an enhanced Convolutional Neural Network (eYOLOv5) model is employed to accurately extract the positional information of small sea-surface objects. For object association, an observation-centric Kalman filter (OKF) is designed to enhance state estimation reliability under shipborne camera motion. Additionally, a Manhattan distance-based intersection over union (MDIoU) metric is proposed to improve association accuracy in dynamic maritime environments. Furthermore, a progressive refinement cascade matching (PRCM) strategy is developed to improve the tracker's adaptability to complex maritime conditions and target occlusions, thereby further enhancing target association performance. Experimental results on the Jari maritime tracking dataset show that SeaMicroTracker achieves a multiple object tracking accuracy (MOTA) of 80.6 and an identification F1 score (IDF1) of 64.0, demonstrating significant advantages in tracking accuracy and stability. Compared with the baseline method ByteTrack, the proposed tracker improves MOTA and IDF1 by 27.9% and 34.7%, respectively, while effectively reducing ID-switching events. Moreover, the tracker achieves an average tracking speed of 30.1 FPS, satisfying real-time requirements for engineering applications.

     

  • loading
  • [1]
    娄月新, 金强, 魏明泽, 等. 海上自主水面船舶自主运行模式及未来发展分析[J]. 船海工程, 2025, 54(1): 71-75, 80.

    LOU Y X, JIN Q, WEI M Z, et al. Analysis of the autonomous operation mode and future development for maritime autonomous surface ship[J]. Ship & Ocean Engineering, 2025, 54(1): 71-75, 80. (in Chinese)
    [2]
    胡一鹏, 闫昭琨, 刘佳仑, 等. 智能船艇虚实融合测试验证技术现状与展望[J]. 船舶工程, 2022, 44(4): 4-13.

    HU Y P, YAN Z K, LIU J L, et al. Current status and prospects of virtual-real fusion test and verification technology for intelligent vessels[J]. Ship Engineering, 2022, 44(4): 4-13. (in Chinese)
    [3]
    THOMBRE S, ZHAO Z, RAMM-SCHMIDT H, et al. Sensors and AI techniques for situational awareness in autonomous ships: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 64-83. doi: 10.1109/TITS.2020.3023957
    [4]
    LYU H, SHAO Z, CHENG T, et al. Sea-surface object detection based on electro-optical sensors: a review[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 190-216. doi: 10.1109/MITS.2022.3198334
    [5]
    CHEN X, LING J, WANG S, et al. Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework[J]. The Journal of Navigation, 2021, 74 (6): 1252-1266. doi: 10.1017/S0373463321000540
    [6]
    CHEN X, XU X, YANG Y, et al. Visual ship tracking via a hybrid kernelized correlation filter and anomaly cleansing framework[J]. Applied Ocean Research, 2021, 106: 102455. doi: 10.1016/j.apor.2020.102455
    [7]
    CHEN Z, CHEN D, ZHANG Y, et al. Deep learning for autonomous ship-oriented small ship detection[J]. Safety Science, 2020, 130: 104812. doi: 10.1016/j.ssci.2020.104812
    [8]
    LIU R W, YUAN W, CHEN X, et al. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system[J]. Ocean Engineering, 2021, 235: 109435. doi: 10.1016/j.oceaneng.2021.109435
    [9]
    SHAO Z, LYU H, YIN Y, et al. Multi-scale object detection model for autonomous ship navigation in maritime environment[J]. Journal of Marine Science and Engineering, 2022, 10 (11): 1783. doi: 10.3390/jmse10111783
    [10]
    王宁, 吴伟, 王元元, 等. 多特征融合的无人艇视觉目标长时相关鲁棒跟踪[J]. 中国舰船研究, 2024, 19(1): 62-74.

    WANG N, WU W, WANG Y Y, et al. Long-term correlation robust tracking of visual targets for unmanned surface vehicles using multi-feature fusion[J]. Chinese Journal of Ship Research, 2024, 19(1): 62-74. (in Chinese)
    [11]
    陈惠红, 胡耀民, 刘世明. 交互多模粒子滤波多特征自适应融合的船舶视觉跟踪[J]. 舰船科学技术, 2018, 40(4): 133-135.

    CHEN H H, HU Y M, LIU S M. Interactive multi-mode particle filter multi feature adaptive fusion for ship vision tracking[J]. Ship Science and Technology, 2018, 40(4): 133-135. (in Chinese)
    [12]
    BLOISI D, IOCCHI L, FIORINI M, et al. Automatic maritime surveillance with visual target detection[C]. The International Defense and Homeland Security Simulation Workshop, Rome, Italy: University of Genoa, 2011.
    [13]
    CHEN X, WANG S, SHI C, et al. Robust ship tracking via multi-view learning and sparse representation[J]. The Journal of Navigation, 2019, 72(1): 176-192. doi: 10.1017/S0373463318000504
    [14]
    TIAN W, LAUER M, CHEN L. Online multi-object tracking using joint domain information in traffic scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (1): 374-384.
    [15]
    郭晓晗, 彭理群, 马定辉. 基于车联网BSM数据与路侧视频融合的港口集装箱卡车碰撞危险辨识方法[J]. 交通信息与安全, 2023, 41(1): 1-12. doi: 10.3963/j.jssn.1674-4861.2023.01.001

    GUO X H, PENG L Q, MA D H. A method of identifying collision risk of container trucks in port terminal areas under an integrated connected vehicle BSM and roadside video surveillance data[J]. Journal of Transport Information and Safety, 2023, 41(1): 1-12. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.001
    [16]
    HASSAN S, MUJTABA G, RAJPUT A, et al. Multi-object tracking: a systematic literature review[J]. Multimedia Tools and Applications, 2024, 83(14): 43439-43492.
    [17]
    马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010

    MA H W, ZHANG D, LI Y L, et al. A ship detection algorithm for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.010
    [18]
    张立国, 赵嘉士, 金梅, 等. 改进YOLOX在近岸船舶检测中的应用[J]. 计量学报, 2024, 45(1): 30-37.

    ZHANG L G, ZHAO J S, JIN M, et al. Application of improved YOLOX in inshore ship inspection[J]. Acta Metrologica Sinica, 2024, 45(1): 30-37. (in Chinese)
    [19]
    WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, Canada: IEEE, 2023.
    [20]
    周欣, 徐培哲, 李堃, 等. 基于损失函数与注意力机制改进的YOLOv8火焰目标检测算法优化研究[J]. 船海工程, 2025, 54(2): 19-25.

    ZHOU X, XU P Z, LI K, et al. Optimization of YOLOv8 flame target detection algorithm based on improved loss function and attention mechanism[J]. Ship & Ocean Engineering, 2025, 54(2): 19-25. (in Chinese)
    [21]
    BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]. The IEEE International Conference on Image Processing, Phoenix, USA: IEEE, 2016.
    [22]
    WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]. The IEEE International Conference on Image Processing, Beijing, China: IEEE, 2017.
    [23]
    ZHANG Y, SUN P, JIANG Y, et al. Bytetrack: multi-object tracking by associating every detection box[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel: Springer Nature Switzerland, 2022.
    [24]
    AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[EB/OL]. (2022-07-07)[2025-03-01]. https://arxiv.org/abs/2206.14651.
    [25]
    SHAO Z, YIN Y, LYU H, et al. An efficient model for small object detection in the maritime environment[J]. Applied Ocean Research, 2024, 152: 104194. doi: 10.1016/j.apor.2024.104194
    [26]
    ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
    [27]
    YANG F, ODASHIMA S, MASUI S, et al. Hard to track objects with irregular motions and similar appearances? make it easier by buffering the matching space[C]. The IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA: IEEE, 2023.
    [28]
    Jiangsu Automation Research Institute. Jari maritime tracking dataset. [DB/OL]. (2022-09-30)[2025-03-01]. https://github.com/hjq3659/Jari-Maritime-Tracking-Dataset.git.
    [29]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland: Springer Nature Switzerland, 2014.
    [30]
    XU Y, OSEP A, BAN Y, et al. How to train your deep multi-object tracker[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA: IEEE, 2020.
    [31]
    LIU S, LI X, LU H, et al. Multi-object tracking meets moving UAV[C]. The IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, USA: IEEE, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return