| Citation: | HUANG Liwen, WEN Teng, LI Haoyu, ZHAO Xingya, ZHANG Kun. Collision Avoidance and Early Warning Method for Inland Bridge Areas Based on Enhanced Safety Potential Fields[J]. Journal of Transport Information and Safety, 2025, 43(4): 14-23. doi: 10.3963/j.jssn.1674-4861.2025.04.002 |
| [1] |
GE J, LUO T, QIU J. Discretized macro-element method to evaluate the crushing behavior and protective performance of crashworthy devices under ship collisions[J]. Ocean Engineering, 2024, 306: 118125. doi: 10.1016/j.oceaneng.2024.118125
|
| [2] |
王飞, 吕忠达, 赵卓, 等. 基于刚柔匹配的桥梁柔性防撞装置研究[J]. 桥梁建设, 2021, 51(1): 82-87.
WANG F, LYU ZD, ZHONG D, et al. Research on flexible anti-collision device for bridges based on rigid-flexible matching[J]. Bridge Construction, 2021, 51(1): 82-87. (in Chinese)
|
| [3] |
夏烨, 陈李沐, 王君杰, 等. 基于SSD的桥梁主动防船撞目标检测方法与应用[J]. 湖南大学学报(自然科学版), 2020, 47(3): 97-105.
XIA Y, CHEN L M, WANG J J, et al. Single shot multibox detector based vessel detection method and application for active anti-collision monitoring[J]. Journal of Hunan University (Natural Sciences), 2020, 47(3): 97-105.
|
| [4] |
PERERA L P, GUEDES SOARES C. Collision risk detection and quantification in ship navigation with integrated bridge systems[J]. Ocean Engineering, 2015, 109: 344-354. doi: 10.1016/j.oceaneng.2015.08.016
|
| [5] |
WAN Y, LIU C, QIAO W. An safety assessment model of ship collision based on Bayesian Network[C]. 2019 European Navigation Conference(ENC), Warsaw, Poland: Polish Navigation Forum, 2019.
|
| [6] |
WU B, YIP T L, YAN X, et al. Fuzzy logic based approach for ship-bridge collision alert system[J]. Ocean Engineering, 2019, 187: 106152. doi: 10.1016/j.oceaneng.2019.106152
|
| [7] |
王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016, 29(1): 105-114.
WANG J Q, WU J, LI Y. Concept, principle and modeling of driving risk field based on driver-vehicle-road Interaction[J]. China Journal of Highway and Transport, 2016, 29(1): 105-114. (in Chinese)
|
| [8] |
李林恒, 甘婧, 曲栩, 等. 智能网联环境下基于安全势场理论的车辆跟驰模型[J]. 中国公路学报, 2019, 32(12): 76-87.
LI L H, G J, QU X, et al. Car-following model based on safety potential field theory under connected and automated Vehicle Environment[J]. China Journal of Highway and Transport, 2019, 32(12): 76-87. (in Chinese)
|
| [9] |
谢楚安, 任羿, 杨德真, 等. 面向无人驾驶车辆的行车安全场模型构建方法[J]. 北京航空航天大学学报, 2024, 50(4): 1375-1383.
XIE C A, REN Y, YANG D Z, et al. Construction method of driving safety field model for unmanned vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1375-1383(in Chinese)
|
| [10] |
YANG Z S, YU Y, YU D X, et al. APF-based car following behavior considering lateral distance[J]. Advances in Mechanical Engineering, 2013(5): 207104.
|
| [11] |
王群朋, 李龙浩, 关宏旭, 等. 基于三维势场模型的船舶局部路径规划方法[J]. 中国舰船研究, 2025, 20(1): 135-146.
WANG Q P, LI L H, GUAN H X, et al. Ship local path planning method based on three-dimensional potential field model[J]. Chinese Journal of Ship Research, 2025, 20(1): 135-146(in Chinese).
|
| [12] |
程细得, 刘鹏辉, 韩琨羽, 等. 基于人工势场-操纵运动混合模型的船舶路径规划[J]. 华中科技大学学报(自然科学版), 2024, 52(1): 85-90.
CHENG X D, LIU P H, HAN K Y, et al. Path planning of ship based on artificial potential field-maneuvering motion hybrid model[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2024, 52(1): 85-90(in Chinese).
|
| [13] |
GOERLANDT F, MONTEWKA J. Maritime transportation risk analysis: Review and analysis in light of some foundational issues[J]. Reliability Engineering & System Safety, 2015, 138: 115-134.
|
| [14] |
苏从辉, 尚龙. 池州长江公路大桥4号主墩钢围堰施工技术[J]. 世界桥梁, 2018, 46(5): 32-35.
SU C H, SHANG L. Construction techniques for steel cofferdam of main pier No. 4 of Chi zhou Chang jiang river highway bridge[J]. World Bridges, 2018, 46(5): 32-35.
|
| [15] |
吴建华, 彭虎, 王辰, 等. 基于AIS通信量的水上交通事故检测方法[J]. 交通信息与安全, 2023, 41(5): 83-94.
WU J H, PENG H, WANG C, et al. A detection method for maritime traffic accidents based on AIS communication Volume[J]. Journal of Transport Information and Safety, 2023, 41 (5): 83-94.
|
| [16] |
HETHERINGTON C, FLIN R, MEARNS K. Safety in shipping: the human element[J]. Journal of Safety Research, 2006, 37 (4): 401-411. doi: 10.1016/j.jsr.2006.04.007
|
| [17] |
LI L, GAN J, YI Z, et al. Risk perception and the warning strategy based on safety potential field theory[J]. Accident Analysis & Prevention, 2020, 148: 105805.
|
| [18] |
FAN Y, QIAO S, WANG G, et al. A modified adaptive Kalman filtering method for maneuvering target tracking of unmanned surface vehicles[J]. Ocean Engineering, 2022, 266: 112890. doi: 10.1016/j.oceaneng.2022.112890
|
| [19] |
FARAGHER R. Understanding the basis of the Kalman filter Via a simple and intuitive derivation[Lecture Notes][J]. IEEE Signal Processing Magazine, 2012, 29(5): 128-132. doi: 10.1109/MSP.2012.2203621
|
| [20] |
魏文军, 刘艳浩, 周仲成, 等. 考虑测量噪声和数据丢包的虚拟编组无模型自适应预测控制[J/OL]. 北京航空航天大学学报. 1-18[2025-09-09].
WEI W J, LIU Y H, ZHOU Z C, et al. Model-free adaptive predictive control for virtual grouping considering measurement noise and data packet dropout[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. 1-18[2025-09-09] (in Chinese).
|
| [21] |
徐铁, 蔡奉君, 胡勤友, 等. 基于卡尔曼滤波算法船舶AIS轨迹估计研究[J]. 现代电子技术, 2014, 37(5): 97-100, 104.
XU T, CAI F J, HU Q Y, et al. Research on estimation of AIS vessel trajectory data based on Kalman filter algorithm[J]. Modern Electronics Technique, 2014, 37(5): 97-100, 104. (in Chinese)
|