Volume 43 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
ZHANG Hongzhan, HAN Peng, ZHAO Ke, CHEN Peng. Low-altitude UAV Positioning Fusing Pyramid Grid and Direction-finding Cross-location[J]. Journal of Transport Information and Safety, 2025, 43(3): 162-170. doi: 10.3963/j.jssn.1674-4861.2025.03.015
Citation: ZHANG Hongzhan, HAN Peng, ZHAO Ke, CHEN Peng. Low-altitude UAV Positioning Fusing Pyramid Grid and Direction-finding Cross-location[J]. Journal of Transport Information and Safety, 2025, 43(3): 162-170. doi: 10.3963/j.jssn.1674-4861.2025.03.015

Low-altitude UAV Positioning Fusing Pyramid Grid and Direction-finding Cross-location

doi: 10.3963/j.jssn.1674-4861.2025.03.015
  • Received Date: 2024-09-10
    Available Online: 2025-10-11
  • To address the issue that traditional ground-based direction-finding equipment cannot acquire aircraft altitude data during low-altitude airspace surveillance, this study investigates a low-cost algorithm integrating Gaussian pyramid airspace grid models with ground-based direction-finding equipment, enabling real-time and precise 3D position (including altitude) prediction for low-altitude UAVs. The accessible airspace is discretized into a computable airspace using cubic-meter-level optimal granularity 3D grid technology, laying the computational foundation. During Gaussian filtering downsampling, a 3D Gaussian kernel function dynamically correlated with turbulence intensity is introduced, innovatively con-structing a multi-scale Gaussian pyramid airspace model. Trilinear interpolation upsampling ensures data continuity and precision. Real-time weather conditions, geographic information, and environmental factors are mapped to the airspace grid, establishing a dynamically weighted credibility matrix via a dynamic weighting function based on the variance of environmental parameters. Within the pyramid grid space, combined with direction-finding cross-location data, the algorithm traverses the airspace grid probability set to calculate latitude/longitude and altitude of the UAV, achieving 3D localization. Experimental validation is conducted by deploying two detection devices in a test area. The results demonstrate that: ① Positioning Ac-curacy: In a 3D grid with a minimum resolution of 8 m, the maximum latitude/longitude deviation is 20 m (during target turning), and the average altitude prediction deviation is 4.37 m (standard deviation: 7.87), significantly outperforming comparative methods. ② Computational Efficiency: The algorithm averages only 55 MB memory usage and 9% CPU utilization on an i9-13900H processor, markedly lower than comparative methods. ③ Applicability: It requires only low-cost ground-based direction-finding equipment without onboard devices. The proposed algorithm achieves low-cost, high-precision 3D real-time localization for low-altitude UAVs within cubic-meter-level deviations, providing an effective solution for scenarios with constrained low-altitude surveillance infrastructure deployment.

     

  • loading
  • [1]
    管祥民, 许东松. 低空飞行服务保障体系建设新内涵及人才培训体系构建思考[J]. 民航管理, 2024(6): 19-23.

    GUAN X M, XU D S. Thoughts on the new connotation of the construction of low-altitude flight service support system and the establishment of talent training system[J]. Civil Aviation Management, 2024(6): 19-23. (in Chinese)
    [2]
    韩宝亮. 中国民用低空空域发展的现状、问题及对策[J]. 国际航空航天科学, 2020, 8(4): 61-69.

    HANG B L. The current status, problems and countermeasures of low altitude airspace development in chinese civil aviation industry[J]. Journal of Aerospace Science and Technology[J], 2020, 8(4): 61-69. (in Chinese)
    [3]
    LABIB N S, DANOY G, MUSIAL J, et al. Internet of unmanned aerial vehicles-A multilayer low-altitude airspace model for distributed UAV traffic management[J]. SENSORS, 2019, 19(21): 4779. doi: 10.3390/s19214779
    [4]
    谢华, 尹嘉男, 朱永文, 等. 数字低空空域栅格化的表征度量与最优标定[J]. 数据采集与处理, 2024, 39(1): 31-43.

    XIE H, YIN J N, ZHU Y W, et al. Characterization, calculation and optimal calibration for rasterization in digital low-altitude airspace system[J]. Journal of Data Acquisition and Processing, 2024, 39(1): 31-43. (in Chinese)
    [5]
    王艳军, 水笑雨, 王梦尹. 机场航班时刻资源管理研究进展[J]. 北京航空航天大学学报, 2024, 50(4): 1065-1076.

    WANG Y J, SHUI X Y, WANG M Y. Research progress on airport slot allocation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1065-1076. (in Chinese)
    [6]
    PONGSAKORNSATHIEN N, BIJJAHALLI S, GARDI A, et al. A performance-based airspace model for unmanned aircraft systems traffic management[J]. Aerospace, 2020, 7 (11): 154-154. doi: 10.3390/aerospace7110154
    [7]
    PANG B Z, LOWK H, LYU C. Adaptive conflict resolution for multi-UAV 4D routes optimization using stochastic fractal search algorithm[J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103666. doi: 10.1016/j.trc.2022.103666
    [8]
    陈志杰, 朱永文, 刘杨. 基于数字化空域系统的城市无人机管理对策研究[J]. 中国民航大学学报, 2023, 41(3): 8-12, 64.

    CHEN Z J, ZHU Y W, LIU Y. Management strategy of the urban UAV based on digital airspace system[J]. Journal of Civil Aviation University of China, 2023, 41(3): 8-12, 64. (in Chinese)
    [9]
    LI X Y, ZHANG X J, TAN Y H, et al. Optimization of digital multi-beamforming for space-based ADS-B using distributed cooperative coevolution with an adaptive grouping strategy[J]. Chinese Journal of Aeronautics, 2023, 36(10): 391-408. doi: 10.1016/j.cja.2023.03.008
    [10]
    余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815.

    YU S S, CHEN Y J, ZHANG X J, et al. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815. (in Chinese)
    [11]
    谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023, 44(18): 216-236.

    XIE H, SU F Z, YIN J N, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 216-236. (in Chinese)
    [12]
    VLADIMIR K, VLADIMIR O, IGOR K, et al. Use of acoustic signature for detection, recognition and direction finding of small unmanned aerial vehicles[C]. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine: IEEE, 2020.
    [13]
    徐朋豪, 丁洪兵, 李成, 等. 远场环境下基于方向角的测向交叉定位技术研究[J]. 齐鲁工业大学学报, 2024, 38(2): 16-23.

    XU M H, DING H B, LI C, et al. A study on the lateral cross localization using direction angle in far-field environment[J]. Journal of Qilu University of Technology, 2024, 38(2): 16-23.
    [14]
    徐海源, 苏成晓, 汪华兴. 1种融合时差频差和测向的运动目标跟踪方法[J]. 电讯技术, 2024, 64(2): 261-265.

    XU H Y, SU C X, WANG H X. A moving target tracking method based on fusion of TDOA/ FDOA/DOA[J]. Telecommunication Engineering, 2024, 64(2): 261-265. (in Chinese)
    [15]
    朱永文, 谢华, 王长春. 空域数值计算与优化方法[M]. 北京: 科学出版社, 2020.

    ZHU Y W, XIE H, WANG C C. Numerical computation and optimization methods in airspace[M]. Beijing: Science Press, 2020. (in Chinese)
    [16]
    赵江, 孟晨阳, 王晓博, 等. 特征点提取下的AGV栅格法建模与分析[J]. 计算机工程与应用, 2022, 58(8): 156-167.

    ZHAO J, MENG C Y, WANG X B, et al. Modeling and analysis of AGV grid method based on feature points extraction[J]. Computer Engineering and Applications, 2022, 58 (8): 156-167. (in Chinese)
    [17]
    程果, 陈荦, 吴秋云, 等. 1种面向复杂地理空间栅格数据处理算法并行化的任务调度方法[J]. 国防科技大学学报, 2012, 34(6): 61-65.

    CHEN G, CHEN L, WU Q Y, et al. A task scheduling method for parallelization of complicated geospatial raster data processing algorithms[J]. Journal of National University of Defense Technology, 2012, 34(6): 61-65. (in Chinese)
    [18]
    潘卫军, 罗昊天, 罗玉明, 等. 不同侧风类型影响下的飞机尾涡数值模拟研究[J]. 科学技术与工程, 2023, 23(4): 1747-1759.

    PAN W J, LUO H T, LUO Y M. Numerical simulation of aircraft wake vortex under the influence of different crosswind Types[J]. Science Technology and Engineering, 2023, 23 (4): 1747-1759. (in Chinese)
    [19]
    陈英, 董思羽. 基于可信度小波神经网络的多传感器数据融合方法[J]. 吉林大学学报(理学版), 2020, 58(4): 953-959.

    CHEN Y, DONG S Y. Fusion method based on credible wavelet neural network for multi-sensor data[J]. Journal of Jilin University(Science Edition), 2020, 58(4): 953-959. (in Chinese)
    [20]
    张健, 赵嶷飞, 卢飞, 等. 城市物流无人机平行航线横向间隔研究[J]. 交通信息与安全, 2024, 42(4): 118-124. doi: 10.3963/j.jssn.1674-4861.2024.04.013

    ZHANG J, ZHAO N F, LU F, et al. Study on parallel routes lateral separation for urban logistics UAV[J]. Journal of Transport Information and Safety, 2024, 42(4): 118-124. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.04.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (33) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return