Volume 43 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
YANG Jianting, HUANG Qunbang, LIU Qingqi, LI Shilin, SAI Ying. Low-altitude Trajectory Planning Method for Fixed-wing VTOL Aircraft Based on Adaptive Airspace Structure Topology[J]. Journal of Transport Information and Safety, 2025, 43(3): 141-153. doi: 10.3963/j.jssn.1674-4861.2025.03.013
Citation: YANG Jianting, HUANG Qunbang, LIU Qingqi, LI Shilin, SAI Ying. Low-altitude Trajectory Planning Method for Fixed-wing VTOL Aircraft Based on Adaptive Airspace Structure Topology[J]. Journal of Transport Information and Safety, 2025, 43(3): 141-153. doi: 10.3963/j.jssn.1674-4861.2025.03.013

Low-altitude Trajectory Planning Method for Fixed-wing VTOL Aircraft Based on Adaptive Airspace Structure Topology

doi: 10.3963/j.jssn.1674-4861.2025.03.013
  • Received Date: 2024-11-14
    Available Online: 2025-10-11
  • In current air traffic management systems, aircraft trajectory planning methods based on uniform gridsare widely adopted but exhibit inherent limitations. The uniform grid partitioning of airspace fails to adaptivelymatch variable-scale obstacle distributions, resulting in reduced planning efficiency, higher computational costs inspecific airspace sectors, and diminished responsiveness to dynamic trajectory adjustments. To address these challenges, an adaptive airspace mesh-scaling topology algorithm is studied in this paper. This approach applies adaptive Delaunay triangulation to match the spatial distribution of obstacles and enables rapid local reconstruction ofthe airspace structure in response to the updates from dynamic obstacles. Subsequently, a trajectory-searching network is constructed using this adaptive topology. The A* algorithm generates the initial trajectories on this network.To mitigate excessive length and sharp turns in initial paths, a trajectory refinement algorithm is de-signed. This optimization method replaces sharp turns with circular arcs through local detection. Non-conforming arcs are optimized by adjusting the safety boundary radius to comply with the operational characteristics of fixed-wing VTOL aircraft.Simulation results from the specific test examples show that the adaptive airspace mesh-scaling topology algorithmreduces the number of airspace grid cells by 69.33%, significantly compressing the search space. The trajectory refinement algorithm can reduce trajectory length by 8%-15% while markedly enhancing smoothness of the trajectory, there-by decreasing the complexity and energy consumption of flight control. In summary, this study provides an efficient and practical solution for low-altitude trajectory planning of fixed-wing VTOL aircraft.

     

  • loading
  • [1]
    廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报, 2023, 44(24): 6-34.

    LIAO X H, QU W Q, XU C C, et al. Overview of urban air mobility and its new infrastructure: low-altitude public air routes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (24): 6-34. (in Chinese).
    [2]
    LIU Y, KREIMEIER M, STUMPF E, et al. Overview of recent endeavors on personal aerial vehicles: a focus on the US and Europe led research activities[J]. Progress in Aerospace Sciences, 2017, 91: 53-66.
    [3]
    BACCHINI A, CESTINO E. Electric VTOL configurations comparison[J]. Aerospace, 2019, 6(3): 26.
    [4]
    KASLIWAL A, FURBUSH N J, GAWRON J H, et al. Role of flying cars in sustainable mobility[J]. Nature communications, 2019, 10(1): 1555.
    [5]
    ZHOU Y, ZHAO H, LIU Y. An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles[J]. Computer Communications, 2020, 149(1): 356-369.
    [6]
    BAURANOV A, RAKAS J. Designing airspace for urban air mobility: a review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125(1): 100726.
    [7]
    张洪海, 李姗, 夷珈, 等. 城市低空航路规划研究综述[J]. 南京航空航天大学学报, 2021, 53(6): 827-838.

    ZHANG H H, LI S, YI J, et al. A comprehensive review of urban low-altitude air route planning research[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(6): 827-838(in Chinese).
    [8]
    王俊潼, 包丹文, 周佳怡, 等. 低空空域规划研究现状与展望[J/OL]. (2024-10-29)[2025-04-20]. http://kns.cnki.net/kcms/detail/11.1929.V.20241029.1546.008.html.

    WANG J T, BAO D W, ZHOU J Y, et al. Research status and prospects of low-altitude airspace planning[J/OL]. (2024-10-29)[2025-04-20]. http://kns.cnki.net/kcms/detail/11.1929.V.20241029.1546.008.html. (in Chinese)
    [9]
    李诚龙, 屈文秋, 李彦冬等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54

    LI C L, QU W Q, LI Y D, HUANG L Y, et al. Overview of traffic management of urban air mobility(UAM)with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. (in Chinese)
    [10]
    蒋薇, 李印凤. 基于熵权改进-TOPSIS法的扇区复杂度评估方法[J]. 交通信息与安全, 2023, 41(6): 142-151.

    JIANG W, LI Y F. A method forevaluating sector complexity based on the entropy weight-improved TOPSIS method[J]. Journal of Transport Information and Safety, 2023, 41(6): 142-151. (in Chinese)
    [11]
    张兆宁, 张东满. 基于Delauany三角形的分时段区域管制扇区划分[J]. 科学技术与工程, 2014, 14(29): 100-105.

    ZHANG Z N, ZHANG D M. Time-period-based regional control sector division based on Delauany triangles[J]. Science Technology and Engineering, 2014, 14(29): 100-105. (in Chinese).
    [12]
    ZOU X, CHENG P, AN B, et al. Sectorization and configuration transition in airspace design[J]. Mathematical Problems in Engineering, 2016(1): 6048326.
    [13]
    BLOCHLIGER F, FEHR M, DYMCZYK M, et al. Topomap: topological mapping and navigation based on visual slam maps[C]. 2018 IEEE International Conference on Robotics and Automation(ICRA), Brisbane, QLD, Australia: IEEE, 2018.
    [14]
    CHO J, YOON Y. Extraction and interpretation of geometrical and topological properties of urban airspace for UAS operations[C]. 13th USA/Europe Air Traffic Management Research and Development Seminar (ATM2019), Daejeon, South Korea: KAIST, 2019.
    [15]
    VINCENT-BOULAY N, MARSDEN C, CUI A. Data-driven geospatial modeling for complex airspace environments[C]. Modeling and Simulation of Air and Space Vehicle Dynamics, Systems, and Environments Ⅱ, Orlando, FL: AIAA, 2024.
    [16]
    陈艺君, 余莎莎, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815.

    CHEN Y J, YU S S, ZHANG X J. Quantitative Assessment of ground-level risks from UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815. (in Chinese)
    [17]
    WU P, XIE J, LIU Y, et al. Risk-bounded and fairness-aware path planning for urban air mobility operations under uncertainty[J]. Aerospace Science and Technology, 2022, 127: 107738.
    [18]
    LIU H, LI X, FAN M, et al. An autonomous path planning method for unmanned aerial vehicle based on a tangent intersection and target guidance strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23 (4): 3061-3073.
    [19]
    LIU Y, ZHANG X, GUAN X, et al. Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization[J]. Aerospace Science and Technology, 2016, 58: 92-102.
    [20]
    LAI R, WU Z, LIU X, et al. Fusion algorithm of the improved A* algorithm and segmented bezier curves for the path planning of mobile robots[J]. Sustainability, 2023, 15 (3): 2483.
    [21]
    LIU L, LIN J, YAO J, et al. Path planning for smart car based on Dijkstra algorithm and dynamic window approach[J]. Wireless Communications and Mobile Computing, 2021(1): 8881684.
    [22]
    张洪海, 张连东, 刘皞, 等. 城市低空物流无人机航迹规划模型研究[J]. 交通运输系统工程与信息, 2022, 22(1): 256-264.

    ZHANG H H, ZHANG L D, LIU H, et al. Research on the flight path planning model for urban low-altitude logistics drones[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 256-264. (in Chinese).
    [23]
    ZHANG H, TIAN T, FENG O, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial aehicles[J]. Sustainability, 2023(15): 12021.
    [24]
    RIENECKER H, HILDEBRAND V, PFIFER H. Energy optimal 3D flight path planning for unmanned aerial vehicle in urban environments[J]. CEAS Aeronautical Journal, 2023, 14 (3): 621-636.
    [25]
    余翔, 邓千锐, 段思睿, 等. 1种多无人机协同优先覆盖搜索算法[J]. 系统仿真学报, 2024, 36(4): 991-1000.

    YU X, DENG Q R, DUAN S R, et al. A multi-UAV cooperative prioritized coverage search algorithm[J]. Journal of System Simulation, 2024, 36(4): 991-1000. (in Chinese).
    [26]
    赵嶷飞, 谷瑞嘉, 任新惠. 考虑城市低空风场的小型无人机路径规划方法[J/OL]. 北京航空航天大学学报, 1-15[2025-06-18]. https://doi.org/10.13700/j.bh.1001-5965.2024.0281.

    ZHAO Y F, GU R J, REN X H. Path planning method for small unmanned aerial vehicles considering the urban low-altitude wind field[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-15[2025-06-18]. https://doi.org/10.13700/j.bh.1001-5965.2024.0281.
    [27]
    艾毅, 庾映雪, 钟庆伟, 等. 面向航空器集群的多尺度保护区模型与改进速度障碍法[J]. 交通信息与安全, 2024, 42 (2): 49-58, 66.

    AI Y, YU Y X, ZHONG Q W, et al. Multi-scale protection zone model and improved velocity obstacle method for aircraft clusters[J]. Journal of Transport Information and Safety, 2024, 42(02): 49-58, 66. (in Chinese)
    [28]
    全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 6-34.

    QUAN Q, LI G, BO Y Q, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 6-34. (in Chinese)
    [29]
    陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程, 2021, 21(31): 13221-13237.

    CHEN Y Y, ZHANG J P, ZOU X, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237. (in Chinese)
    [30]
    黄龙杨, 张顶立, 李诚龙, 等. 无人机城市超低空运行概念(ConOps)初探[J]. 民航学报, 2022, 6(3): 50-55.

    HUANG L Y, ZHANG D L, et al. Concept of operation for UAVs in urban ultra-low-altitude airspace[J]. Journal of Civil Aviation, 2022, 6(3): 50-55. (in Chinese)
    [31]
    JOHNSON, WILLIAM C. UAM coordination and assessment team(UCAT)NASA UAM for ENRI technical interchange meeting[R]. Washington D. C. : NASA, 2019.
    [32]
    张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 82-106.

    ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. A comprehensive review of future urban air traffic management research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 82-106. (in Chinese)
    [33]
    王兴隆, 苗尚飞. 空域扇区网络结构特性分析及韧性评估[J]. 北京航空航天大学学报, 2021, 47(5): 904-911.

    WANG X L MIAO S F. Analysis of network structure characteristics and resilience evaluation of airspace sectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 904-911. (in Chinese)
    [34]
    朱云峰, 王艳军, 朱陈平. 不同攻击模式下中国航路网络抗毁性研究[J]. 南京工程学院学报(自然科学版), 2018, 16 (2): 51-56.

    ZHU Y F, WANG Y J, ZHU C P. Research on the invulnerability of China's airway network under different attack modes[J]. Journal of Nanjing Institute of Technology(Natural Science Edition), 2018, 16(2): 51-56. (in Chinese)
    [35]
    朱永文, 谢华, 王长春. 空域数值计算与优化方法[M]. 北京: 科学出版社, 2020.

    ZHU Y W, XIE H, WANG C C. numerical computation and optimization methods for airspace[M]. Beijing: Science Press, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (24) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return