Citation: | WU Jinqiong, CHEN Ziwei, CEN Mingrui, ZHANG Zhixian, LI Yunqi. A Review of Drone Delivery Models and Key Technologies[J]. Journal of Transport Information and Safety, 2025, 43(3): 112-127. doi: 10.3963/j.jssn.1674-4861.2025.03.011 |
[1] |
SCHMIDT S, SARACENI A. Consumer acceptance of drone-based technology for last mile delivery[J]. Research in Transportation Economics, 2024, 103: 101414. doi: 10.1016/j.retrec.2024.101414
|
[2] |
任璇, 黄辉, 于少伟, 等. 车辆与无人机组合配送研究综述[J]. 控制与决策, 2021, 36(10): 2313-2327.
REN X, HUANG H, YU S W, et al. Review on vehicle-UAV combined delivery problem[J]. Control and Decision, 2021, 36(10): 2313-2327. (in Chinese)
|
[3] |
MADANI B, NDIAYE M. Hybrid truck-drone delivery systems: a systematic literature review[J]. Access, 2022(10): 92854-92878.
|
[4] |
CHU Y, HO C, LEE Y, et al. Development of a solar-powered unmanned aerial vehicle for extended flight endurance[J]. Drones, 2021, 5(2): 44. doi: 10.3390/drones5020044
|
[5] |
CHODNICKI M, SIEMIATKOWSKA B, STECZ W, et al. Energy efficient UAV flight control method in an environment with obstacles and gusts of wind[J]. Energies, 2022, 15 (10): 3730. doi: 10.3390/en15103730
|
[6] |
朱贺, 黄辰雷, 杨利明, 等. 基于响应面法和拓扑优化的四旋翼无人机机架结构优化研究[J]. 机械设计, 2023, 40(增刊2): 130-135.
ZHU H, HUANG C L, YANG L M, et al. Optimization of quadrotor UAV frame structure based on response surface method and topology optimization[J]. Journal of Machine Design, 2023, 40(S2): 130-135. (in Chinese)
|
[7] |
邓舒豪, 雷涛, 金贤球, 等. 燃料电池无人机混合电源系统稳定性及功率控制方法[J]. 航空学报, 2024, 45(17): 146-162.
DENG S H, LEI T, JIN X Q, et al. Stability and power control method of hybrid power system for fuel cell UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 146-162. (in Chinese)
|
[8] |
张启钱, 许卫卫, 张洪海, 等. 复杂低空物流无人机路径规划[J]. 北京航空航天大学学报, 2020, 46(7): 1275-1286.
ZHANG Q Q, XU W W, ZHANG H H, et al. Path planning for logistics UAV in complex low-altitude airspace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1275-1286. (in chinese)
|
[9] |
DENG M, YANG Q, PENG Y. A real-time path planning method for urban low-altitude logistics UAVs[J]. Sensors, 2023, 23(17): 7472. doi: 10.3390/s23177472
|
[10] |
SHEN K, SHIVGAN R, MEDINA J, et al. Multidepot drone path planning with collision avoidance[J]. Internet of Things Journal, 2022, 9(17): 16297-16307. doi: 10.1109/JIOT.2022.3151791
|
[11] |
SCHERMER D, MOEINI M, WENDT O. A branch-and-cut approach and alternative formulations for the traveling salesman problem with drone[J]. Networks, 2020, 76(2): 164-186. doi: 10.1002/net.21958
|
[12] |
TINIÇ G O, KARASAN O E, KARA B Y, et al. Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones[J]. Transportation Research Part B: Methodological, 2023, 168: 81-123. doi: 10.1016/j.trb.2022.12.007
|
[13] |
宋瑞, 边疆, 何世伟, 等. 考虑超重超远客户的卡车无人机协同配送研究[J]. 中国公路学报, 2024, 37(3): 395-406.
SONG R, BIAN J, HE S W, et al. Truck-drone joint delivery with consideration given to customers with great demands and at great distances[J]. China Journal of Highway and Transport, 2024, 37(3): 395-406. (in Chinese)
|
[14] |
WU G, MAO N, LUO Q, et al. Collaborative truck-drone routing for contactless parcel delivery during the epidemic[J]. Transactions on Intelligent Transportation Systems, 2022, 23(12): 25077-25091. doi: 10.1109/TITS.2022.3181282
|
[15] |
LIN M, CHEN Y, HAN R, et al. Discrete optimization on truck-drone collaborative transportation system for delivering medical resources[J]. Discrete Dynamics in Nature and Society, 2022(1): 1811288.
|
[16] |
KIM S, MOON I. Traveling salesman problem with a drone station[J]. Transactions on Systems, Man, Cybernetics: Systems, 2018, 49(1): 42-52.
|
[17] |
WU G, FAN M, SHI J, et al. Reinforcement learning based truck-and-drone coordinated delivery[J]. Transactions on Artificial Intelligence, 2021, 4(4): 754-763.
|
[18] |
BI Z, GUO X, WANG J, et al. Deep reinforcement learning for truck-drone delivery problem[J]. Drones, 2023, 7(7): 445. doi: 10.3390/drones7070445
|
[19] |
CHOUDHURY S, SOLOVEY K, KOCHENDERFER M J, et al. Efficient large-scale multi-drone delivery using transit networks[J]. Journal of Artificial Intelligence Research, 2021, 70: 757-788. doi: 10.1613/jair.1.12450
|
[20] |
DAYARIAN I, SAVELSBERGH M, CLARKE J-P. Same-day delivery with drone resupply[J]. Transportation Science, 2020, 54(1): 229-249. doi: 10.1287/trsc.2019.0944
|
[21] |
WANG D, HU P, DU J, et al. Routing and scheduling for hybrid truck-drone collaborative parcel delivery with independent and truck-carried drones[J]. Internet of Things Journal, 2019(6): 10483-10495.
|
[22] |
TEIMOURYE, RASHID R. The sustainable hybridtruck-drone delivery model with stochastic customer existence[J]. Research in Transportation Economics, 2023, 100: 101325. doi: 10.1016/j.retrec.2023.101325
|
[23] |
刘正元, 王清华. 无人机和车辆协同配送映射模式综述与展望[J]. 系统工程与电子技术, 2023, 45(3): 785-796.
LIU Z Y, WANG Q H. Review and prospect under the mapping mode of coordinated delivery of drones and vehicles[J]. Systems Engineering and Electronics, 2023, 45(3): 785-796. (in Chinese)
|
[24] |
崔明, 冯建民, 米征, 等. 大型无人机主结构耐久性试验加载技术[J]. 航空学报, 2022, 43(6): 397-406.
CUI M, FENG J M, MI Z, et al. Loading technology for main structure of large UAV durability test[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 397-406. (in Chinese)
|
[25] |
MA Y, CHIANG S W, CHU X, et al. Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles[J]. Energy Storage, 2019(1): e48.
|
[26] |
BACANLI S S, ELGELDAWI E, TURGUT B, et al. UAV charging station placement in opportunistic networks[J]. Drones, 2022, 6(10): 293. doi: 10.3390/drones6100293
|
[27] |
CHITTOOR P K, CHOKKALINGAM B. Wireless electrification system for photovoltaic powered autonomous drone charging[J]. Transactions on Transportation Electrification, 2023, 10(2): 3002-3011.
|
[28] |
蒋金橙, 王佩月, 冯天旭, 等. 基于准双向三态协同调度的无人车和无人机逐级式无线充电应用[J]. 电工技术学报, 2024, 39(22): 6955-6979.
JIANG J C, WANG P Y, FENG T X, et al. AGV and UAV stepwise wireless charging application based on quasi bidirectional three-state collaborative progressive method[J]. Transactions of China Electrotechnical Society, 2024, 39 (22): 6955-6979. (in Chinese)
|
[29] |
ELSAYED M, FODA A, MOHAMED M. Autonomous drone charging station planning through solar energy harnessing for zero-emission operations[J]. Sustainable Cities Society, 2022, 86: 104122. doi: 10.1016/j.scs.2022.104122
|
[30] |
ASADI A, NURRE PINKLEY S. A monotone approximate dynamic programming approach for the stochastic scheduling, allocation, and inventory replenishment problem: applications to drone and electric vehicle battery swap stations[J]. Transportation science, 2022, 56(4): 1085-1110. doi: 10.1287/trsc.2021.1108
|
[31] |
CHEN K, ZHANG Z. In-flight wireless charging: A promising application-oriented charging technique for drones[J]. IEEE Industrial Electronics Magazine, 2023, 18(1): 6-16.
|
[32] |
AL-KAFF A, ARMINGOL J M, DE LA ESCALERA A. A vision-based navigation system for unmanned aerial vehicles (UAVs)[J]. Integrated Computer-Aided Engineering, 2019, 26(3): 297-310. doi: 10.3233/ICA-190601
|
[33] |
CONTE G, DOHERTY P. Vision-based unmanned aerial vehicle navigation using geo-referenced information[J]. EURASIP Journal on Advances in Signal Processing, 2009, (24): 387308.
|
[34] |
ALMAHAMID F, GROLINGER K. Autonomous unmanned aerial vehicle navigation using reinforcement learning: A systematic review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105321. doi: 10.1016/j.engappai.2022.105321
|
[35] |
XU C. UAV patrol path planning based on machine vision and multi-sensor fusion[J]. Open Computer Science, 2023, 13 (1): 20220276. doi: 10.1515/comp-2022-0276
|
[36] |
DU Z, FENG X, LI F, et al. A lightweight UAV visual obstacle avoidance algorithm based on improved YOLOv8[J]. Computers, Materials & Continua, 2024, 81(2): 2607-2627.
|
[37] |
陈佳, 张珂, 杜英森, 等. 基于改进势场法的多无人机避碰控制方法[J]. 探测与控制学报, 2024, 46(4): 93-100.
CHEN J, ZHANG K, DU Y S, et al. Improved potential field method for multi-UAV collision avoidance control[J]. Journal of Detection & Control, 2024, 46(4): 93-100. (in chinese)
|
[38] |
WANG D, LI W, LIU X, et al. UAV environmental perception and autonomous obstacle avoidance: A deep learning and depth camera combined solution[J]. Computers Electronics in Agriculture, 2020, 175: 105523. doi: 10.1016/j.compag.2020.105523
|
[39] |
AWADA U, ZHANG J, CHEN S, et al. Edgedrones: co-scheduling of drones for multi-location aerial computing missions[J]. Journal of Network and Computer Applications, 2023, 215: 103632. doi: 10.1016/j.jnca.2023.103632
|
[40] |
方城亮, 杨飞生, 潘泉. 基于MASAC强化学习算法的多无人机协同路径规划[J]. 中国科学: 信息科学, 2024, 54(8): 1871-1883.
FANG C L, YANG F S, PAN Q. Multi-UAV collaborative path planning based on multi-agent soft actor critic[J]. Scientia Sinica(Informationis), 2024, 54(8): 1871-1883. (in Chinese)
|
[41] |
GUPTA R, KUMARI A, TANWAR S. Fusion of blockchain and artificial intelligence for secure drone networking underlying 5G communications[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(1): 4176. doi: 10.1002/ett.4176
|
[42] |
YANMAZ E, YAHYANEJAD S, RINNER B, et al. Drone networks: Communications, coordination, and sensing[J]. Ad Hoc Networks, 2018, 68: 1-15. doi: 10.1016/j.adhoc.2017.09.001
|
[43] |
CHANG Z, GUO W, GUO X, et al. Blockchain-empowered drone networks: architecture, features, and future[J]. Network, 2021, 35(1): 86-93.
|
[44] |
HE D, CHAN S, GUIZANI M. Communication security of unmanned aerial vehicles[J]. Wireless Communications, 2016, 24(4): 134-139.
|
[45] |
PLIOUTSIAS A, KARANIKAS N, CHATZIMIHAILIDOU M M. Hazard analysis and safety requirements for small drone operations: to what extent do popular drones embed safety?[J]. Risk Analysis, 2018, 38(3): 562-584. doi: 10.1111/risa.12867
|
[46] |
KOCSIS SZÜRKE S, PERNESS N, FÖLDESI P, et al. A risk assessment technique for energy-efficient drones to support pilots and ensure safe flying[J]. Infrastructures, 2023, 8 (4): 67. doi: 10.3390/infrastructures8040067
|
[47] |
张健, 王守源, 赵嶷飞, 等. 城市无人机航线飞行间隔与调控频率综合研究[J]. 交通信息与安全, 2024, 42(1): 11-18. doi: 10.3963/j.jssn.1674-4861.2024.01.002
ZHANG J, WANG S Y, ZHAO Y F, et al. Comprehensive study on route flight separation and control frequency of urban UAV[J]. Journal of Transport Information and Safety, 2024, 42(1): 11-18. (in chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.002
|
[48] |
YANG L, JIA G, ZHENG K, et al. An unmanned aerial vehicle troubleshooting mode selection method based on SIF-SVM with fault phenomena text record[J]. Aerospace, 2021, 8(11): 347. doi: 10.3390/aerospace8110347
|
[49] |
蒙文跃, 杨延平, 温阳, 等. 1种临近空间太阳能无人机自主故障诊断及应急处理策略[J]. 航天控制, 2020, 38(2): 56-61.
MENG W Y, YANG Y P, WEN Y, et al. An autonomous fault diagnosis and emergency rreatment srategy for solar-powered UAVs in near space[J]. Aerospace Control, 2020, 38(2): 56-61. (in Chinese)
|
[50] |
ROSEMAN C A, ARGROW B M. Weather hazard risk quantification for sUAS safety risk management[J]. Journal of Atmospheric Oceanic Technology, 2020, 37(7): 1251-1268. doi: 10.1175/JTECH-D-20-0009.1
|
[51] |
GAO M, HUGENHOLTZ C H, FOX T A, et al. Weather constraints on global drone flyability[J]. Scientific Reports, 2021, 11(1): 12092. doi: 10.1038/s41598-021-91325-w
|
[52] |
MISHRA B, GARG D, NARANG P, et al. Drone-surveillance for search and rescue in natural disaster[J]. Computer Communications, 2020, 156: 1-10. doi: 10.1016/j.comcom.2020.03.012
|
[53] |
KIM B, MIN H, HEO J, et al. Dynamic computation offloading scheme for drone-based surveillance systems[J]. Sensors, 2018, 18(9): 2982. doi: 10.3390/s18092982
|