Volume 43 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
WU Jinqiong, CHEN Ziwei, CEN Mingrui, ZHANG Zhixian, LI Yunqi. A Review of Drone Delivery Models and Key Technologies[J]. Journal of Transport Information and Safety, 2025, 43(3): 112-127. doi: 10.3963/j.jssn.1674-4861.2025.03.011
Citation: WU Jinqiong, CHEN Ziwei, CEN Mingrui, ZHANG Zhixian, LI Yunqi. A Review of Drone Delivery Models and Key Technologies[J]. Journal of Transport Information and Safety, 2025, 43(3): 112-127. doi: 10.3963/j.jssn.1674-4861.2025.03.011

A Review of Drone Delivery Models and Key Technologies

doi: 10.3963/j.jssn.1674-4861.2025.03.011
  • Received Date: 2024-12-17
    Available Online: 2025-10-11
  • As an emerging logistics mode, drone delivery has garnered significant attention in recent years. However, technical bottlenecks including limited endurance, insufficient payload capacity, and poor adaptability to complex environments constrain its large-scale implementation. Addressing these challenges, this paper reviews advances in delivery modes of the drone and key technologies to enhance its operational efficiency and application scope. In terms of delivery modes, diversification trends are observed, encompassing drone-only delivery, drone-vehicle collaborative delivery, and others. Comparative analysis reveals optimization models, applicable scenarios, challenges, and performance metrics of different drone delivery modes. Key technological advances include: ①Endurance solutions through multi-energy systems, lightweight design, payload optimization, and charging infrastructure. ②Enhanced navigation precision via fused inertial navigation systems (INS), visual odometry, simultaneous localization and mapping (SLAM), and other multi-sensor systems augmented by deep learning for autonomous obstacle avoidance. ③Secure communications leveraging 5G, edge computing, and blockchain. ④Risk mitigation using behavior recognition and anomaly detection. In the future, the research should prioritize multi-source navigation, intelligent obstacle avoidance, space-air-ground networks, and proactive defense systems to strengthen robustness and monitoring of delivery drones; additionally, dynamic mode switching designs, multi-objective optimization models, and integrated charging-swapping technologies for overcoming energy constraints require further investigation.

     

  • loading
  • [1]
    SCHMIDT S, SARACENI A. Consumer acceptance of drone-based technology for last mile delivery[J]. Research in Transportation Economics, 2024, 103: 101414. doi: 10.1016/j.retrec.2024.101414
    [2]
    任璇, 黄辉, 于少伟, 等. 车辆与无人机组合配送研究综述[J]. 控制与决策, 2021, 36(10): 2313-2327.

    REN X, HUANG H, YU S W, et al. Review on vehicle-UAV combined delivery problem[J]. Control and Decision, 2021, 36(10): 2313-2327. (in Chinese)
    [3]
    MADANI B, NDIAYE M. Hybrid truck-drone delivery systems: a systematic literature review[J]. Access, 2022(10): 92854-92878.
    [4]
    CHU Y, HO C, LEE Y, et al. Development of a solar-powered unmanned aerial vehicle for extended flight endurance[J]. Drones, 2021, 5(2): 44. doi: 10.3390/drones5020044
    [5]
    CHODNICKI M, SIEMIATKOWSKA B, STECZ W, et al. Energy efficient UAV flight control method in an environment with obstacles and gusts of wind[J]. Energies, 2022, 15 (10): 3730. doi: 10.3390/en15103730
    [6]
    朱贺, 黄辰雷, 杨利明, 等. 基于响应面法和拓扑优化的四旋翼无人机机架结构优化研究[J]. 机械设计, 2023, 40(增刊2): 130-135.

    ZHU H, HUANG C L, YANG L M, et al. Optimization of quadrotor UAV frame structure based on response surface method and topology optimization[J]. Journal of Machine Design, 2023, 40(S2): 130-135. (in Chinese)
    [7]
    邓舒豪, 雷涛, 金贤球, 等. 燃料电池无人机混合电源系统稳定性及功率控制方法[J]. 航空学报, 2024, 45(17): 146-162.

    DENG S H, LEI T, JIN X Q, et al. Stability and power control method of hybrid power system for fuel cell UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 146-162. (in Chinese)
    [8]
    张启钱, 许卫卫, 张洪海, 等. 复杂低空物流无人机路径规划[J]. 北京航空航天大学学报, 2020, 46(7): 1275-1286.

    ZHANG Q Q, XU W W, ZHANG H H, et al. Path planning for logistics UAV in complex low-altitude airspace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1275-1286. (in chinese)
    [9]
    DENG M, YANG Q, PENG Y. A real-time path planning method for urban low-altitude logistics UAVs[J]. Sensors, 2023, 23(17): 7472. doi: 10.3390/s23177472
    [10]
    SHEN K, SHIVGAN R, MEDINA J, et al. Multidepot drone path planning with collision avoidance[J]. Internet of Things Journal, 2022, 9(17): 16297-16307. doi: 10.1109/JIOT.2022.3151791
    [11]
    SCHERMER D, MOEINI M, WENDT O. A branch-and-cut approach and alternative formulations for the traveling salesman problem with drone[J]. Networks, 2020, 76(2): 164-186. doi: 10.1002/net.21958
    [12]
    TINIÇ G O, KARASAN O E, KARA B Y, et al. Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones[J]. Transportation Research Part B: Methodological, 2023, 168: 81-123. doi: 10.1016/j.trb.2022.12.007
    [13]
    宋瑞, 边疆, 何世伟, 等. 考虑超重超远客户的卡车无人机协同配送研究[J]. 中国公路学报, 2024, 37(3): 395-406.

    SONG R, BIAN J, HE S W, et al. Truck-drone joint delivery with consideration given to customers with great demands and at great distances[J]. China Journal of Highway and Transport, 2024, 37(3): 395-406. (in Chinese)
    [14]
    WU G, MAO N, LUO Q, et al. Collaborative truck-drone routing for contactless parcel delivery during the epidemic[J]. Transactions on Intelligent Transportation Systems, 2022, 23(12): 25077-25091. doi: 10.1109/TITS.2022.3181282
    [15]
    LIN M, CHEN Y, HAN R, et al. Discrete optimization on truck-drone collaborative transportation system for delivering medical resources[J]. Discrete Dynamics in Nature and Society, 2022(1): 1811288.
    [16]
    KIM S, MOON I. Traveling salesman problem with a drone station[J]. Transactions on Systems, Man, Cybernetics: Systems, 2018, 49(1): 42-52.
    [17]
    WU G, FAN M, SHI J, et al. Reinforcement learning based truck-and-drone coordinated delivery[J]. Transactions on Artificial Intelligence, 2021, 4(4): 754-763.
    [18]
    BI Z, GUO X, WANG J, et al. Deep reinforcement learning for truck-drone delivery problem[J]. Drones, 2023, 7(7): 445. doi: 10.3390/drones7070445
    [19]
    CHOUDHURY S, SOLOVEY K, KOCHENDERFER M J, et al. Efficient large-scale multi-drone delivery using transit networks[J]. Journal of Artificial Intelligence Research, 2021, 70: 757-788. doi: 10.1613/jair.1.12450
    [20]
    DAYARIAN I, SAVELSBERGH M, CLARKE J-P. Same-day delivery with drone resupply[J]. Transportation Science, 2020, 54(1): 229-249. doi: 10.1287/trsc.2019.0944
    [21]
    WANG D, HU P, DU J, et al. Routing and scheduling for hybrid truck-drone collaborative parcel delivery with independent and truck-carried drones[J]. Internet of Things Journal, 2019(6): 10483-10495.
    [22]
    TEIMOURYE, RASHID R. The sustainable hybridtruck-drone delivery model with stochastic customer existence[J]. Research in Transportation Economics, 2023, 100: 101325. doi: 10.1016/j.retrec.2023.101325
    [23]
    刘正元, 王清华. 无人机和车辆协同配送映射模式综述与展望[J]. 系统工程与电子技术, 2023, 45(3): 785-796.

    LIU Z Y, WANG Q H. Review and prospect under the mapping mode of coordinated delivery of drones and vehicles[J]. Systems Engineering and Electronics, 2023, 45(3): 785-796. (in Chinese)
    [24]
    崔明, 冯建民, 米征, 等. 大型无人机主结构耐久性试验加载技术[J]. 航空学报, 2022, 43(6): 397-406.

    CUI M, FENG J M, MI Z, et al. Loading technology for main structure of large UAV durability test[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 397-406. (in Chinese)
    [25]
    MA Y, CHIANG S W, CHU X, et al. Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles[J]. Energy Storage, 2019(1): e48.
    [26]
    BACANLI S S, ELGELDAWI E, TURGUT B, et al. UAV charging station placement in opportunistic networks[J]. Drones, 2022, 6(10): 293. doi: 10.3390/drones6100293
    [27]
    CHITTOOR P K, CHOKKALINGAM B. Wireless electrification system for photovoltaic powered autonomous drone charging[J]. Transactions on Transportation Electrification, 2023, 10(2): 3002-3011.
    [28]
    蒋金橙, 王佩月, 冯天旭, 等. 基于准双向三态协同调度的无人车和无人机逐级式无线充电应用[J]. 电工技术学报, 2024, 39(22): 6955-6979.

    JIANG J C, WANG P Y, FENG T X, et al. AGV and UAV stepwise wireless charging application based on quasi bidirectional three-state collaborative progressive method[J]. Transactions of China Electrotechnical Society, 2024, 39 (22): 6955-6979. (in Chinese)
    [29]
    ELSAYED M, FODA A, MOHAMED M. Autonomous drone charging station planning through solar energy harnessing for zero-emission operations[J]. Sustainable Cities Society, 2022, 86: 104122. doi: 10.1016/j.scs.2022.104122
    [30]
    ASADI A, NURRE PINKLEY S. A monotone approximate dynamic programming approach for the stochastic scheduling, allocation, and inventory replenishment problem: applications to drone and electric vehicle battery swap stations[J]. Transportation science, 2022, 56(4): 1085-1110. doi: 10.1287/trsc.2021.1108
    [31]
    CHEN K, ZHANG Z. In-flight wireless charging: A promising application-oriented charging technique for drones[J]. IEEE Industrial Electronics Magazine, 2023, 18(1): 6-16.
    [32]
    AL-KAFF A, ARMINGOL J M, DE LA ESCALERA A. A vision-based navigation system for unmanned aerial vehicles (UAVs)[J]. Integrated Computer-Aided Engineering, 2019, 26(3): 297-310. doi: 10.3233/ICA-190601
    [33]
    CONTE G, DOHERTY P. Vision-based unmanned aerial vehicle navigation using geo-referenced information[J]. EURASIP Journal on Advances in Signal Processing, 2009, (24): 387308.
    [34]
    ALMAHAMID F, GROLINGER K. Autonomous unmanned aerial vehicle navigation using reinforcement learning: A systematic review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105321. doi: 10.1016/j.engappai.2022.105321
    [35]
    XU C. UAV patrol path planning based on machine vision and multi-sensor fusion[J]. Open Computer Science, 2023, 13 (1): 20220276. doi: 10.1515/comp-2022-0276
    [36]
    DU Z, FENG X, LI F, et al. A lightweight UAV visual obstacle avoidance algorithm based on improved YOLOv8[J]. Computers, Materials & Continua, 2024, 81(2): 2607-2627.
    [37]
    陈佳, 张珂, 杜英森, 等. 基于改进势场法的多无人机避碰控制方法[J]. 探测与控制学报, 2024, 46(4): 93-100.

    CHEN J, ZHANG K, DU Y S, et al. Improved potential field method for multi-UAV collision avoidance control[J]. Journal of Detection & Control, 2024, 46(4): 93-100. (in chinese)
    [38]
    WANG D, LI W, LIU X, et al. UAV environmental perception and autonomous obstacle avoidance: A deep learning and depth camera combined solution[J]. Computers Electronics in Agriculture, 2020, 175: 105523. doi: 10.1016/j.compag.2020.105523
    [39]
    AWADA U, ZHANG J, CHEN S, et al. Edgedrones: co-scheduling of drones for multi-location aerial computing missions[J]. Journal of Network and Computer Applications, 2023, 215: 103632. doi: 10.1016/j.jnca.2023.103632
    [40]
    方城亮, 杨飞生, 潘泉. 基于MASAC强化学习算法的多无人机协同路径规划[J]. 中国科学: 信息科学, 2024, 54(8): 1871-1883.

    FANG C L, YANG F S, PAN Q. Multi-UAV collaborative path planning based on multi-agent soft actor critic[J]. Scientia Sinica(Informationis), 2024, 54(8): 1871-1883. (in Chinese)
    [41]
    GUPTA R, KUMARI A, TANWAR S. Fusion of blockchain and artificial intelligence for secure drone networking underlying 5G communications[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(1): 4176. doi: 10.1002/ett.4176
    [42]
    YANMAZ E, YAHYANEJAD S, RINNER B, et al. Drone networks: Communications, coordination, and sensing[J]. Ad Hoc Networks, 2018, 68: 1-15. doi: 10.1016/j.adhoc.2017.09.001
    [43]
    CHANG Z, GUO W, GUO X, et al. Blockchain-empowered drone networks: architecture, features, and future[J]. Network, 2021, 35(1): 86-93.
    [44]
    HE D, CHAN S, GUIZANI M. Communication security of unmanned aerial vehicles[J]. Wireless Communications, 2016, 24(4): 134-139.
    [45]
    PLIOUTSIAS A, KARANIKAS N, CHATZIMIHAILIDOU M M. Hazard analysis and safety requirements for small drone operations: to what extent do popular drones embed safety?[J]. Risk Analysis, 2018, 38(3): 562-584. doi: 10.1111/risa.12867
    [46]
    KOCSIS SZÜRKE S, PERNESS N, FÖLDESI P, et al. A risk assessment technique for energy-efficient drones to support pilots and ensure safe flying[J]. Infrastructures, 2023, 8 (4): 67. doi: 10.3390/infrastructures8040067
    [47]
    张健, 王守源, 赵嶷飞, 等. 城市无人机航线飞行间隔与调控频率综合研究[J]. 交通信息与安全, 2024, 42(1): 11-18. doi: 10.3963/j.jssn.1674-4861.2024.01.002

    ZHANG J, WANG S Y, ZHAO Y F, et al. Comprehensive study on route flight separation and control frequency of urban UAV[J]. Journal of Transport Information and Safety, 2024, 42(1): 11-18. (in chinese) doi: 10.3963/j.jssn.1674-4861.2024.01.002
    [48]
    YANG L, JIA G, ZHENG K, et al. An unmanned aerial vehicle troubleshooting mode selection method based on SIF-SVM with fault phenomena text record[J]. Aerospace, 2021, 8(11): 347. doi: 10.3390/aerospace8110347
    [49]
    蒙文跃, 杨延平, 温阳, 等. 1种临近空间太阳能无人机自主故障诊断及应急处理策略[J]. 航天控制, 2020, 38(2): 56-61.

    MENG W Y, YANG Y P, WEN Y, et al. An autonomous fault diagnosis and emergency rreatment srategy for solar-powered UAVs in near space[J]. Aerospace Control, 2020, 38(2): 56-61. (in Chinese)
    [50]
    ROSEMAN C A, ARGROW B M. Weather hazard risk quantification for sUAS safety risk management[J]. Journal of Atmospheric Oceanic Technology, 2020, 37(7): 1251-1268. doi: 10.1175/JTECH-D-20-0009.1
    [51]
    GAO M, HUGENHOLTZ C H, FOX T A, et al. Weather constraints on global drone flyability[J]. Scientific Reports, 2021, 11(1): 12092. doi: 10.1038/s41598-021-91325-w
    [52]
    MISHRA B, GARG D, NARANG P, et al. Drone-surveillance for search and rescue in natural disaster[J]. Computer Communications, 2020, 156: 1-10. doi: 10.1016/j.comcom.2020.03.012
    [53]
    KIM B, MIN H, HEO J, et al. Dynamic computation offloading scheme for drone-based surveillance systems[J]. Sensors, 2018, 18(9): 2982. doi: 10.3390/s18092982
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (33) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return