Citation: | GAO Li, YANG Nuohan, LI Qing, WANG Yongheng, YAN Han, ZHAO Ruhao, MA Xiaoping. Deep Mining and Association Recommendation Method for Railway Safety Knowledge Based on Multimodal Information Fusion[J]. Journal of Transport Information and Safety, 2025, 43(3): 33-43. doi: 10.3963/j.jssn.1674-4861.2025.03.004 |
[1] |
王朋辉, 李晓宇, 罗扬帆. 铁路安全治理过程管控体系构建及实施路径研究[J]. 中国铁路, 2024(2): 145-151.
WANG P H, LI X Y, LUO Y F. Construction and implementation path of railway safety governance process control system[J]. China Railway, 2024(2): 145-151. (in Chinese)
|
[2] |
毛骞, 谢维成, 乔逸天, 等. 推荐系统冷启动问题解决方法研究综述[J]. 计算机科学与探索, 2024, 18(5): 1197-1210.
MAO Q, XIE W C, QIAO Y T, et al. Research on solutions to the cold-start problem in recommender systems: a review[J]. Computer Science and Exploration, 2024, 18(5): 1197-1210. (in Chinese)
|
[3] |
AGGARWAL V, GARIMELLA A, SRINIVASAN B V, et al. ClauseRec: a clause recommendation framework for AI-aided contract authoring[C]. the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, 2021.
|
[4] |
党铮. 企业制度建设重要性及方法探究——从合规管理角度[J]. 现代管理, 2023, 13(11): 1405-1409.
DANG Z. Research on the importance and methods of corporate system construction: from the perspective of compliance management[J]. Modern Management, 2023, 13(11): 1405-1409. (in Chinese)
|
[5] |
严李强, 田博, 梁炜恒, 等. 藏文文本相似度计算方法研究[J]. 高原科学研究, 2021, 5(3): 70-77, 114.
YAN LQ, TIAN B, LIANG WH, et al. Research on Tibetan text similarity calculation methods[J]. Plateau Science Research, 2021, 5(3): 70-77, 114. (in Chinese)
|
[6] |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[OL]. (2013-01-14)[2025-04-12].
|
[7] |
PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for Computational Linguistics, 2014.
|
[8] |
张昱, 冯亚寒, 丁千惠. 融合Word2Vec词嵌入的多核卷积神经网络音乐歌词多情感分类方法[J]. 科学技术与工程, 2024, 24(20): 8598-8605.
ZHANG Y, FENG Y H, DING Q H. Multi-emotion classification of music lyrics based on multi-kernel convolutional neural network with Word2Vec embedding[J]. Science Technology and Engineering, 2024, 24(20): 8598-8605. (in Chinese)
|
[9] |
周燕. 基于GloVe模型和注意力机制Bi-LSTM的文本分类方法[J]. 电子测量技术, 2024, 45(7): 42-47.
ZHOU Y. Text classification method based on GloVe model and attention-mechanism Bi-LSTM[J]. Electronic Measurement Technology, 2024, 45(7): 42-47. (in Chinese)
|
[10] |
GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA: ACM, 2016.
|
[11] |
HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs[J]. Advances in Neural Information Processing Systems, 2017, 30: 1024-1034.
|
[12] |
曹琨, 吴新年, 靳军宝, 等. 基于共词和Node2Vec表示学习的新兴技术识别方法[J]. 数据分析与知识发现, 2023, 7 (9): 89-99.
CAO K, WU X N, JIN J B, et al. Emerging technology identification method based on co-word and Node2Vec representation learning[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 89-99. (in Chinese)
|
[13] |
敬容, 杨逸民, 万福成, 等. 藏文短文本分类研究[J]. 中文信息学报, 2024, 38(9): 58-65.
JING R, YANG Y M, WAN F C, et al. Tibetan short text classification research[J]. Journal of Chinese Information Processing, 2024, 38(9): 58-65. (in Chinese)
|
[14] |
张茜茜. 基于文本挖掘的企业技术创新指标体系构建方法研究[D]. 北京: 北京交通大学, 2021.
ZHANG Q X. Research on construction method of enterprise technology innovation indicator system based on text mining[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
|
[15] |
何瑾琳, 刘学军, 徐新艳, 等. 融合Node2Vec和深度神经网络的隐式反馈推荐模型[J]. 计算机科学, 2019, 46(6): 41-48.
HE J L, LIU X J, XU X Y, et al. Implicit feedback recommendation model integrating Node2Vec and deep neural networks[J]. Computer Science, 2019, 46(6): 41-48. (in Chinese)
|
[16] |
孙明龙, 欧阳纯萍, 刘永彬, 等. 基于分层融合策略和上下文信息嵌入的多模态情绪识别[J]. 北京大学学报(自然科学版), 2024, 60(3): 393-402.
SUN M L, OYANG C P, LIU Y B, et al. Multimodal emotion recognition based on hierarchical fusion strategy and contextual information embedding[J]. Journal of Peking University (Natural Science), 2024, 60(3): 393-402. (in Chinese)
|
[17] |
王曙燕, 巩婧怡. 融合长短时序与文本分类的新闻推荐模型[J]. 西安邮电大学学报, 2023, 28(3): 82-87.
WANG S Y, GONG J Y. News recommendation model integrating long and short-term sequences and text classification[J]. Journal of Xi'an University of Posts and Telecommunications, 2023, 28(3): 82-87. (in Chinese)
|
[18] |
赵悦阳, 崔雷. 文本嵌入技术的研究与应用进展[J]. 数据与计算发展前沿, 2023, 5(3): 92-110.
ZHAO Y Y, CUI L. Research and application advances of text embedding technologies[J]. Frontiers of Data and Computing Development, 2023, 5(3): 92-110. (in Chinese)
|
[19] |
姚思雨, 赵天哲, 王瑞杰, 等. 规则引导的知识图谱联合嵌入方法[J]. 计算机研究与发展, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741.
YAO S Y, ZHAO T Z, WANG R J, et al. Rule-guided knowledge graph joint embedding method[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. doi: 10.7544/issn1000-1239.2020.20200741
|
[20] |
杨晨, 刘敬辉, 李晓宇, 等. 铁路安全生产标准化管理优化对策[J]. 中国铁路, 2023(11): 131-136.
YANG C, LIU J H, LI X Y, et al. Optimization strategies for standardized management of railway safety production[J]. China Railway, 2023(11): 131-136. (in Chinese)
|