Citation: | DING Jianlong, JIN Hui, LI Zhaoxin, CHENG Zhiquan, SONG Tianhao, XU Haoxuan. A Method of Full Section Surface High-speed Sensing for Track Safety Inspection[J]. Journal of Transport Information and Safety, 2025, 43(3): 24-32. doi: 10.3963/j.jssn.1674-4861.2025.03.003 |
[1] |
王广琦, 毛庆洲, 夏梦璇, 等. 基于轨道结构高差特征值的CRTSⅡ型板离缝定量检测方法[J]. 铁道学报, 2024, 46(3): 50-59.
WANG G Q, MAO Q Z, XIA M X, et al., Quantitative detection method for CRTS Ⅱ slab gap based on characteristic values of elevation difference of track structure[J]. Journal of the China Railway Society, 2024, 46(3): 50-59. (in Chinese)
|
[2] |
孙旭, 王平. 高速铁路扣件失效对车辆-轨道耦合系统动态响应的影响[J]. 铁道学报, 2022, 44(8): 108-116.
SUN X, WANG P. Effect of fastener failure of high-speed railway on dynamic response of vehicle-track coupling system[J]. Journal of the China Railway Society, 2022, 44(8): 108-116. (in Chinese)
|
[3] |
张翕然, 李正中, 张馨, 等. 城市轨道交通系统韧性研究现状及展望[J]. 交通信息与安全, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001
ZHANG X R, LI Z Z, ZHANG X, et al. Status and prospects of studies on urban rail transit resilience[J]. Journal of Transport Information and Safety, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001
|
[4] |
JING G, QIN X, WANG H, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242. doi: 10.1016/j.autcon.2022.104242
|
[5] |
张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013
ZHANG Z H, DENG Y X, ZHANG X X, A method for detecting and differentiating asphalt pavement distress based on an improved SegNet algorithm[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
|
[6] |
杜昊天, 陈丰, 李琛, 等. 低能见度下人行横道发光标线视认及预警效果研究[J]. 交通信息与安全, 2024, 42(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2024.02.006
DU H T, CHEN F, LI C, et al. An Evaluation for Impacts of Illuminating Crosswalk Markings on Driving Safety under Low Visibility Conditions[J]. Journal of Transport Information and Safety, 2024, 42(2): 59-66. doi: 10.3963/j.jssn.1674-4861.2024.02.006
|
[7] |
马子骥, 沈伦旺, 蒋志文, 等. 面向复杂轨形的钢轨断面轮廓实时识别方法[J]. 铁道学报, 2023, 45(4): 92-101.
MA Z J, SHEN L W, JIANG Z W, et al., Method of real-time recognition of effective rail profiles from complex track structures[J]. Journal of the China Railway Society, 2023, 45(4): 92-101. (in Chinese)
|
[8] |
MAO Q, CUI H, HU Q, et al. A rigorous fastener inspection approach for high-speed railway from structured light sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 249-267. doi: 10.1016/j.isprsjprs.2017.11.007
|
[9] |
ASHISH J, WANG J, YANG X L, et al. Tracknet-a deep learning based fault detection for railway track inspection[C]. 2018 International Conference on Intelligent Rail Transportation(ICIRT), Singapore: IEEE, 2018.
|
[10] |
李杉杉. 基于深度学习的轨道巡检小车轨面检测算法研究[D]. 兰州: 兰州交通大学, 2023.
LI S S. Research on the detection algorithm of track surface for track inspection trolley based on deep learning[D]. Lanzhou: Lanzhou Jiaotong University, 2023. (in Chinese)
|
[11] |
LI Y, TRINH H, HAAS N, et al. Rail component detection, optimization, and assessment for automatic rail track inspection[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 760-770.
|
[12] |
GAN J, WANG J, YU H, et al. Online rail surface inspection utilizing spatial consistency and continuity[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50 (7): 2741-2751.
|
[13] |
YANG F, ZHAO J, YU B, et al. Research on automatic dodging method for road surface line array images[J]. Advances in Civil Engineering, 2022(1): 2447359.
|
[14] |
FENG H, JIANG Z, XIE F, et al. Automatic fastener classification and defect detection in vision-based railway inspection systems[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 63(4): 877-888.
|
[15] |
YANG H, WANG Y, HU J, et al. Deep learning and machine vision-based inspection of rail surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 1-14.
|
[16] |
REN Y, LU P, AI C, et al. Review of emerging technologies and issues in rail and track inspection for local lines in the United States[J]. Journal of Transportation Engineering, Part A: Systems, 2021, 147(10): 04021062. doi: 10.1061/JTEPBS.0000567
|
[17] |
钱永军, 姜仕军, 臧勐佳, 等. 基于深度学习的轨道车辆线阵相机图像畸变校正方法[J]. 智慧轨道交通, 2021, 58(6): 5-10.
QIAN Y J, JIANG S J, ZANG M J, et al. A method for correcting train linear ray camera image distortion based on deep learning[J]. Intelligent Rail Transit, 2021, 58(6): 5-10. (in Chinese)
|
[18] |
李一凡. 基于机器视觉的轨道缺陷智能巡检小车设计研究[D]. 兰州: 兰州交通大学, 2022.
LI Y. Research on intelligent inspection trolley for track defects based on machine vision[D]. Lanzhou: Lanzhou Jiaotong University, 2022. (in Chinese)
|
[19] |
程雨, 杜馨瑜, 顾子晨, 等. 基于FPGA和DSP的高速实时轨道巡检图像采集处理系统[J]. 中国铁道科学, 2021, 42(1): 32-42.
CHENG Y, DU X Y, GU Z C, et al. High-speed real-time acquisition and processing system of track inspection images based on FPGA and DSP[J]. China Railway Science, 2021, 42 (1): 32-42. (in Chinese)
|
[20] |
房磊, 史泽林, 刘云鹏, 等. 几何联合分段亮度的线阵图像配准[J]. 中国图象图形学报, 2024, 29(1): 80-94.
FANG L, SHI Z L, LIU Y P, et al. Joint geometric and piecewise photometric line-scan image registration[J]. Journal of Image and Graphics, 2024, 29(1): 80-94. (in Chinese)
|
[21] |
李奇, 戴宝锐, 杨飞, 等. 轨道平顺性检测方法现状及发展综述[J]. 铁道学报, 2024, 46(7): 101-116.
LI Q, DAI B R, YANG F, et al. Overview on existing and developing methods for track irregularity detection[J]. Journal of the China Railway Society, 2024, 46(7): 101-116. (in Chinese)
|
[22] |
余建, 周旺保, 蒋丽忠, 等. 高速铁路桥上设计震致轨道几何不平顺等效方法[J]. 交通运输工程学报, 2024, 24(3): 110-123.
YU J, ZHOU W B, JIANG L Z, et al. Equivalent method for designed earthquake-induced track geometric irregularities on high-speed railway bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 110-123. (in Chinese)
|
[23] |
陈仁祥, 潘升, 杨黎霞, 等. 基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪[J]. 铁道学报, 2024, 46 (5): 123-131.
CHEN R X, PAN S, YANG L X, et al. Noise reduction of rail surface defect images based on attention-guided poly-scale denoising convolutional neural networks[J]. Journal of the China Railway Society, 2024, 46(5): 123-131. (in Chinese)
|
[24] |
李湘宁, 贾宏志, 张荣福, 等. 工程光学(第三版)[M]. 北京: 科学出版社, 2022.
LI X N, JIA H Z, ZHANG R F, et al. Engineering optics[M]. 3rd ed. Beijing: China Science Publishing & Media Ltd., 2022.
|