Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
ZOU Zheng, CHEN Jiang, LANG Hong, WANG Xiaofeng, WAN Chenguang, DING Shuo, LU Jian. A Review of Pavement Distress Detection Based on Machine Learning Methods[J]. Journal of Transport Information and Safety, 2025, 43(2): 154-168. doi: 10.3963/j.jssn.1674-4861.2025.02.016
Citation: ZOU Zheng, CHEN Jiang, LANG Hong, WANG Xiaofeng, WAN Chenguang, DING Shuo, LU Jian. A Review of Pavement Distress Detection Based on Machine Learning Methods[J]. Journal of Transport Information and Safety, 2025, 43(2): 154-168. doi: 10.3963/j.jssn.1674-4861.2025.02.016

A Review of Pavement Distress Detection Based on Machine Learning Methods

doi: 10.3963/j.jssn.1674-4861.2025.02.016
  • Received Date: 2024-05-24
    Available Online: 2025-09-29
  • Road surface quality directly influences service life and driving safety. Pavement distress involves complex mechanisms, diverse forms, and large-scale spatial distribution, posing challenges for measurement and annotation. Traditional detection methods struggle to meet practical needs for identifying various distress types in diverse scenarios. This paper reviews achievements in machine learning-based pavement distress detection, compares principles and applicability of recognition methods, and summarizes public and private image datasets of pavement distress. Subsequent feature analyses of pavement distress using 3D depth data provide a basis for exploring interactions between multidimensional features and AI models. Finally, general objective evaluation metrics are systematically introduced to ensure fairness in AI-based pavement distress assessment. Distress recognition has evolved from threshold segmentation, element classification, and object detection to pixel-level segmentation, significantly improving accuracy and generalizability. Traditional machine learning and deep learning methods can be integrated to detect more distress types and learn more effective features, improving accuracy and efficiency. Current algorithms should be evaluated using consistent metrics, including runtime, memory usage, computational load, and recognition rate, while considering datasets with varying distress dimensions and road environments. Future work should develop detection and processing methods for complex conditions, enhance signal-to-noise ratios and generalization, and support deploying intelligent algorithms in diverse scenarios.

     

  • loading
  • [1]
    HUANG J, LIU W, SUN X. A pavement crack detection method combining 2D with 3D information based on Dempster-Shafer theory[J]. Computer-aided Civil and Infrastructure Engineering, 2014, 29(4): 299-313.
    [2]
    徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190.

    XU Z G, CHE Y L, LI J L, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 172-190(. in Chinese)
    [3]
    马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137.

    MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137(. in Chinese)
    [4]
    陈江, 原野, 郎洪, 等. 基于多分支深度学习的沥青路面多病害检测方法[J]. 东南大学学报(自然科学版), 2023, 53 (1): 123-129.

    CHEN J, YUAN Y, LANG H, et al. Multi-distress detection method for asphalt pavements based on multi-branch deep learning[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(1): 123-129(. in Chinese)
    [5]
    SOLLAZZO G, WANG K C P, BOSURGI G, et al. Hybrid procedure for automated detection of cracking with 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016032.
    [6]
    ZHANG A, WANG K C P, JI R, et al. Efficient system of cracking-detection algorithms with 1-mm 3D-surface models and performance measures[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016020.
    [7]
    LANG H, LU J J, LOU Y, et al. Pavement cracking detection and classification based on 3D image using multiscale clustering model[J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020034.
    [8]
    王艾迪, 彭一川, 郎洪, 等. 基于YOLOX-Transformer两步模型的路面坑槽提取方法[J]. 中国公路学报, 2023, 36(12): 304-317.

    WANG A D, PENG Y C, LANG H, et al. Pavement pothole extraction based on YOLOX-Transformer two-step model[J]. China Journal of Highway and Transport, 2023, 36(12): 304-317(. in Chinese)
    [9]
    青晨, 禹晶, 肖创柏, 等. 深度卷积神经网络图像语义分割研究进展[J]. 中国图象图形学报, 2020, 25(6): 1069-1090.

    QING C, YU J, XIAO C B, et al. Deep convolutional neural network for semantic image segmentation[J]. Journal of Image and Graphics, 2020, 25(6): 1069-1090(. in Chinese)
    [10]
    GAVILÁN M, BALCONES D, MARCOS O, et al. Adaptive road crack detection system by pavement classification[J]. Sensors, 2011, 11(10): 9628-9657.
    [11]
    SHI Y, CUI L, QI Z, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
    [12]
    郎洪, 温添, 陆键, 等. 基于深度学习的三维路面裂缝类病害检测方法[J]. 东南大学学报(自然科学版), 2021, 51 (1): 53-60.

    LANG H, WEN T, LU J, et al. 3D pavement crack detection method based on deep learning[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(1): 53-60. (in Chinese)
    [13]
    郭立媛, 张磊, 李威, 等. 基于先验知识MinMax k-Means聚类算法的道路裂缝研究[J]. 中国测试, 2018, 44(4): 112-117.

    GUO L Y, ZHANG L, LI W, et al. Research on road crack based on MinMax k-Means clustering algorithm with prior knowledge[J]. China Measurement & Test, 2018, 44(4): 112-117(. in Chinese)
    [14]
    ABDELMAWLA A, YANG J J, KIM S S. Unsupervised learning of pavement distresses from surface images[C]. Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference, Cham, Switzerland: Springer International Publishing, 2021.
    [15]
    GUO N, YOU L, LONG Z, et al. Computationally-affordable unsupervised machine learning algorithm to identify the level of distress severity in pavement functional performance[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 7342-7356.
    [16]
    OLIVEIRA H, CORREIA P L. Automatic road crack detection and characterization[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 14(1): 155-168.
    [17]
    KHERADMANDI N, MEHRANFAR V. A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J]. Construction and Building Materials, 2022, 321: 126162.
    [18]
    左永霞. 高速公路路面破损图像识别技术研究[D]. 长春: 吉林大学, 2008.

    ZUO Y X. Research on highway pavement surface distress image recognition[D]. Changchun: Jilin University, 2008(. in Chinese)
    [19]
    HOANG N D, NGUYEN Q L. A novel method for asphalt pavement crack classification based on image processing and machine learning[J]. Engineering with Computers, 2019, 35: 487-498.
    [20]
    VYAS V, SINGH A P, SRIVASTAVA A. Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks[J]. Road Materials and Pavement Design, 2021, 22(12): 2748-2766.
    [21]
    AHMADI A, KHALESI S, GOLROO A. An integrated machine learning model for automatic road crack detection and classification in urban areas[J]. International Journal of Pavement Engineering, 2022, 23(10): 3536-3552.
    [22]
    HSIEH Y A, TSAI Y J. Machine learning for crack detection: review and model performance comparison[J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020038.
    [23]
    WEN T, LANG H, DING S, et al. PCDNet: seed operation-based deep learning model for pavement crack detection on 3D asphalt surface[J]. Journal of Transportation Engineering, Part B: Pavements, 2022, 148(2): 04022023.
    [24]
    ZHANG K, CHENG H D, ZHANG B. Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning[J]. Journal of Computing in Civil Engineering, 2018, 32(2): 04018001.
    [25]
    沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10.

    SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10(. in Chinese)
    [26]
    LEI X, LIU C, LI L, et al. Automated pavement distress detection and deterioration analysis using street view map[J]. IEEE Access, 2020, (8): 76163-76172.
    [27]
    DU Y, PAN N, XU Z, et al. Pavement distress detection and classification based on YOLO network[J]. International Journal of Pavement Engineering, 2021, 22(13): 1659-1672.
    [28]
    MAJIDIFARD H, JIN P, ADU-GYAMFI Y, et al. Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses[J]. Transportation Research Record, 2020, 2674(2): 328-339.
    [29]
    YAO G, SUN Y, WONG M, et al. A real-time detection method for concrete surface cracks based on improved YOLOv4[J]. Symmetry, 2021, 13(9): 1716.
    [30]
    IBRAGIMOV E, LEE H J, LEE J J, et al. Automated pavement distress detection using region based convolutional neural networks[J]. International Journal of Pavement Engineering, 2022, 23(6): 1981-1992.
    [31]
    ZHU J, ZHONG J, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991.
    [32]
    GUO K, HE C, YANG M, et al. A pavement distresses identification method optimized for YOLOv5s[J]. Scientific Reports, 2022, 12(1): 3542.
    [33]
    YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109.
    [34]
    张涛, 王金, 刘斌, 等. 基于改进U-net的沥青路面图像裂缝分割方法[J]. 交通信息与安全, 2023, 41(6): 90-99.

    ZHANG T, WANG J, LIU B, et al. Crack segmentation of asphalt pavement images based on improved U-net[J]. Journal of Transport Information and Safety, 2023, 41(6): 90-99(. in Chinese)
    [35]
    BANG S, PARK S, KIM H, et al. Encoder-decoder network for pixel-level road crack detection in black-box images[J]. Computer-aided Civil and Infrastructure Engineering, 2019, 34(8): 713-727.
    [36]
    HUYAN J, LI W, TIGHE S, et al. CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection[J]. Structural Control and Health Monitoring, 2020, 27(8): 2551.
    [37]
    WEN T, DING S, LANG H, et al. Automated pavement distress segmentation on asphalt surfaces using a deep learning network[J]. International Journal of Pavement Engineering, 2023, 24(2): 2027414.
    [38]
    LIU J, YANG X, LAU S, et al. Automated pavement crack detection and segmentation based on two-step convolutional neural network[J]. Computer-aided Civil and Infrastructure Engineering, 2020, 35(11): 1291-1305.
    [39]
    FEI Y, WANG K C P, ZHANG A, et al. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(1): 273-284.
    [40]
    TAN C, UDDIN N, MOHAMMED Y M. Deep learning-based crack detection using mask R-CNN technique[C]. 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Saint Louis, USA: NSF Public Access Repository, 2019.
    [41]
    ZHANG A, WANG K C P, FEI Y, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network[J]. Computer-aided Civil and Infrastructure Engineering, 2019, 34(3): 213-229.
    [42]
    SHIM S. Self-training approach for crack detection using synthesized crack images based on conditional generative adversarial network[J]. Computer-aided Civil and Infrastructure Engineering, 2024, 39(7): 1019-1041.
    [43]
    ZOU Q, CAO Y, LI Q, et al. Cracktree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238.
    [44]
    YANG F, ZHANG L, YU S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535.
    [45]
    ZOU Q, ZHANG Z, LI Q, et al. Deepcrack: learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1498-1512.
    [46]
    CHAMBON S, MOLIARD J M. Automatic road pavement assessment with image processing: review and comparison[J]. International Journal of Geophysics, 2011, 2011(1): 989354.
    [47]
    STRICKER R, EISENBACH M, SESSELMANN M, et al. Improving visual road condition assessment by extensive experiments on the extended gaps dataset[C]. 2019 International Joint Conference on Neural Networks(IJCNN), Budapest, Hungary: IEEE, 2019.
    [48]
    MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141.
    [49]
    SONG W, ZHANG Z, ZHANG B, et al. ISTD-PDS7: a benchmark dataset for multi-type pavement distress segmentation from CCD images in complex scenarios[J]. Remote Sensing, 2023, 15(7): 1750.
    [50]
    SOME L. Automatic image-based road crack detection methods[D]. Stockholm: KTH Royal Institute of Technology, 2016.
    [51]
    ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]. 2016 IEEE International Conference on Image Processing(ICIP), Phoenix, USA: IEEE, 2016.
    [52]
    ZHANG A, WANG K C P, LI B, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819.
    [53]
    GONG H, LIU L, LIANG H, et al. A state-of-the-art survey of deep learning models for automated pavement crack segmentation[J]. International Journal of Transportation Science and Technology, 2024, 13: 44-57.
    [54]
    徐志刚. 基于多特征融合的路面破损图像自动识别技术研究[D]. 西安: 长安大学, 2012.

    XU Z G. Study on the automatic identification technology for pavement distress image based on multi-features fusion[D]. Xi'an: Chang'an University, 2012(. in Chinese
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (44) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return