Citation: | ZOU Zheng, CHEN Jiang, LANG Hong, WANG Xiaofeng, WAN Chenguang, DING Shuo, LU Jian. A Review of Pavement Distress Detection Based on Machine Learning Methods[J]. Journal of Transport Information and Safety, 2025, 43(2): 154-168. doi: 10.3963/j.jssn.1674-4861.2025.02.016 |
[1] |
HUANG J, LIU W, SUN X. A pavement crack detection method combining 2D with 3D information based on Dempster-Shafer theory[J]. Computer-aided Civil and Infrastructure Engineering, 2014, 29(4): 299-313.
|
[2] |
徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190.
XU Z G, CHE Y L, LI J L, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 172-190(. in Chinese)
|
[3] |
马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137.
MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137(. in Chinese)
|
[4] |
陈江, 原野, 郎洪, 等. 基于多分支深度学习的沥青路面多病害检测方法[J]. 东南大学学报(自然科学版), 2023, 53 (1): 123-129.
CHEN J, YUAN Y, LANG H, et al. Multi-distress detection method for asphalt pavements based on multi-branch deep learning[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(1): 123-129(. in Chinese)
|
[5] |
SOLLAZZO G, WANG K C P, BOSURGI G, et al. Hybrid procedure for automated detection of cracking with 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016032.
|
[6] |
ZHANG A, WANG K C P, JI R, et al. Efficient system of cracking-detection algorithms with 1-mm 3D-surface models and performance measures[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016020.
|
[7] |
LANG H, LU J J, LOU Y, et al. Pavement cracking detection and classification based on 3D image using multiscale clustering model[J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020034.
|
[8] |
王艾迪, 彭一川, 郎洪, 等. 基于YOLOX-Transformer两步模型的路面坑槽提取方法[J]. 中国公路学报, 2023, 36(12): 304-317.
WANG A D, PENG Y C, LANG H, et al. Pavement pothole extraction based on YOLOX-Transformer two-step model[J]. China Journal of Highway and Transport, 2023, 36(12): 304-317(. in Chinese)
|
[9] |
青晨, 禹晶, 肖创柏, 等. 深度卷积神经网络图像语义分割研究进展[J]. 中国图象图形学报, 2020, 25(6): 1069-1090.
QING C, YU J, XIAO C B, et al. Deep convolutional neural network for semantic image segmentation[J]. Journal of Image and Graphics, 2020, 25(6): 1069-1090(. in Chinese)
|
[10] |
GAVILÁN M, BALCONES D, MARCOS O, et al. Adaptive road crack detection system by pavement classification[J]. Sensors, 2011, 11(10): 9628-9657.
|
[11] |
SHI Y, CUI L, QI Z, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
|
[12] |
郎洪, 温添, 陆键, 等. 基于深度学习的三维路面裂缝类病害检测方法[J]. 东南大学学报(自然科学版), 2021, 51 (1): 53-60.
LANG H, WEN T, LU J, et al. 3D pavement crack detection method based on deep learning[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(1): 53-60. (in Chinese)
|
[13] |
郭立媛, 张磊, 李威, 等. 基于先验知识MinMax k-Means聚类算法的道路裂缝研究[J]. 中国测试, 2018, 44(4): 112-117.
GUO L Y, ZHANG L, LI W, et al. Research on road crack based on MinMax k-Means clustering algorithm with prior knowledge[J]. China Measurement & Test, 2018, 44(4): 112-117(. in Chinese)
|
[14] |
ABDELMAWLA A, YANG J J, KIM S S. Unsupervised learning of pavement distresses from surface images[C]. Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference, Cham, Switzerland: Springer International Publishing, 2021.
|
[15] |
GUO N, YOU L, LONG Z, et al. Computationally-affordable unsupervised machine learning algorithm to identify the level of distress severity in pavement functional performance[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 7342-7356.
|
[16] |
OLIVEIRA H, CORREIA P L. Automatic road crack detection and characterization[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 14(1): 155-168.
|
[17] |
KHERADMANDI N, MEHRANFAR V. A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J]. Construction and Building Materials, 2022, 321: 126162.
|
[18] |
左永霞. 高速公路路面破损图像识别技术研究[D]. 长春: 吉林大学, 2008.
ZUO Y X. Research on highway pavement surface distress image recognition[D]. Changchun: Jilin University, 2008(. in Chinese)
|
[19] |
HOANG N D, NGUYEN Q L. A novel method for asphalt pavement crack classification based on image processing and machine learning[J]. Engineering with Computers, 2019, 35: 487-498.
|
[20] |
VYAS V, SINGH A P, SRIVASTAVA A. Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks[J]. Road Materials and Pavement Design, 2021, 22(12): 2748-2766.
|
[21] |
AHMADI A, KHALESI S, GOLROO A. An integrated machine learning model for automatic road crack detection and classification in urban areas[J]. International Journal of Pavement Engineering, 2022, 23(10): 3536-3552.
|
[22] |
HSIEH Y A, TSAI Y J. Machine learning for crack detection: review and model performance comparison[J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020038.
|
[23] |
WEN T, LANG H, DING S, et al. PCDNet: seed operation-based deep learning model for pavement crack detection on 3D asphalt surface[J]. Journal of Transportation Engineering, Part B: Pavements, 2022, 148(2): 04022023.
|
[24] |
ZHANG K, CHENG H D, ZHANG B. Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning[J]. Journal of Computing in Civil Engineering, 2018, 32(2): 04018001.
|
[25] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10.
SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10(. in Chinese)
|
[26] |
LEI X, LIU C, LI L, et al. Automated pavement distress detection and deterioration analysis using street view map[J]. IEEE Access, 2020, (8): 76163-76172.
|
[27] |
DU Y, PAN N, XU Z, et al. Pavement distress detection and classification based on YOLO network[J]. International Journal of Pavement Engineering, 2021, 22(13): 1659-1672.
|
[28] |
MAJIDIFARD H, JIN P, ADU-GYAMFI Y, et al. Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses[J]. Transportation Research Record, 2020, 2674(2): 328-339.
|
[29] |
YAO G, SUN Y, WONG M, et al. A real-time detection method for concrete surface cracks based on improved YOLOv4[J]. Symmetry, 2021, 13(9): 1716.
|
[30] |
IBRAGIMOV E, LEE H J, LEE J J, et al. Automated pavement distress detection using region based convolutional neural networks[J]. International Journal of Pavement Engineering, 2022, 23(6): 1981-1992.
|
[31] |
ZHU J, ZHONG J, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991.
|
[32] |
GUO K, HE C, YANG M, et al. A pavement distresses identification method optimized for YOLOv5s[J]. Scientific Reports, 2022, 12(1): 3542.
|
[33] |
YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109.
|
[34] |
张涛, 王金, 刘斌, 等. 基于改进U-net的沥青路面图像裂缝分割方法[J]. 交通信息与安全, 2023, 41(6): 90-99.
ZHANG T, WANG J, LIU B, et al. Crack segmentation of asphalt pavement images based on improved U-net[J]. Journal of Transport Information and Safety, 2023, 41(6): 90-99(. in Chinese)
|
[35] |
BANG S, PARK S, KIM H, et al. Encoder-decoder network for pixel-level road crack detection in black-box images[J]. Computer-aided Civil and Infrastructure Engineering, 2019, 34(8): 713-727.
|
[36] |
HUYAN J, LI W, TIGHE S, et al. CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection[J]. Structural Control and Health Monitoring, 2020, 27(8): 2551.
|
[37] |
WEN T, DING S, LANG H, et al. Automated pavement distress segmentation on asphalt surfaces using a deep learning network[J]. International Journal of Pavement Engineering, 2023, 24(2): 2027414.
|
[38] |
LIU J, YANG X, LAU S, et al. Automated pavement crack detection and segmentation based on two-step convolutional neural network[J]. Computer-aided Civil and Infrastructure Engineering, 2020, 35(11): 1291-1305.
|
[39] |
FEI Y, WANG K C P, ZHANG A, et al. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(1): 273-284.
|
[40] |
TAN C, UDDIN N, MOHAMMED Y M. Deep learning-based crack detection using mask R-CNN technique[C]. 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Saint Louis, USA: NSF Public Access Repository, 2019.
|
[41] |
ZHANG A, WANG K C P, FEI Y, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network[J]. Computer-aided Civil and Infrastructure Engineering, 2019, 34(3): 213-229.
|
[42] |
SHIM S. Self-training approach for crack detection using synthesized crack images based on conditional generative adversarial network[J]. Computer-aided Civil and Infrastructure Engineering, 2024, 39(7): 1019-1041.
|
[43] |
ZOU Q, CAO Y, LI Q, et al. Cracktree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238.
|
[44] |
YANG F, ZHANG L, YU S, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1525-1535.
|
[45] |
ZOU Q, ZHANG Z, LI Q, et al. Deepcrack: learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1498-1512.
|
[46] |
CHAMBON S, MOLIARD J M. Automatic road pavement assessment with image processing: review and comparison[J]. International Journal of Geophysics, 2011, 2011(1): 989354.
|
[47] |
STRICKER R, EISENBACH M, SESSELMANN M, et al. Improving visual road condition assessment by extensive experiments on the extended gaps dataset[C]. 2019 International Joint Conference on Neural Networks(IJCNN), Budapest, Hungary: IEEE, 2019.
|
[48] |
MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141.
|
[49] |
SONG W, ZHANG Z, ZHANG B, et al. ISTD-PDS7: a benchmark dataset for multi-type pavement distress segmentation from CCD images in complex scenarios[J]. Remote Sensing, 2023, 15(7): 1750.
|
[50] |
SOME L. Automatic image-based road crack detection methods[D]. Stockholm: KTH Royal Institute of Technology, 2016.
|
[51] |
ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]. 2016 IEEE International Conference on Image Processing(ICIP), Phoenix, USA: IEEE, 2016.
|
[52] |
ZHANG A, WANG K C P, LI B, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819.
|
[53] |
GONG H, LIU L, LIANG H, et al. A state-of-the-art survey of deep learning models for automated pavement crack segmentation[J]. International Journal of Transportation Science and Technology, 2024, 13: 44-57.
|
[54] |
徐志刚. 基于多特征融合的路面破损图像自动识别技术研究[D]. 西安: 长安大学, 2012.
XU Z G. Study on the automatic identification technology for pavement distress image based on multi-features fusion[D]. Xi'an: Chang'an University, 2012(. in Chinese
|