Citation: | LI Xiaomei, LYU Bin. Predicting the Demand of Ride-Hailing Based on a QRF-SA-ConvLSTM Model[J]. Journal of Transport Information and Safety, 2025, 43(2): 127-135. doi: 10.3963/j.jssn.1674-4861.2025.02.014 |
[1] |
张政, 陈艳艳, 梁天闻. 基于网约车数据的城市区域出行时空特征识别与预测研究[J]. 交通运输系统工程与信息, 2020, 20(3): 89-94.
ZHANG Z, CHEN Y Y, LIANG T W. Research on identification and prediction of spatial-temporal characteristics of urban regional travel based on ride-hailing data[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 89-94. (in Chinese)
|
[2] |
席殷飞, 刘钟锴, 杨佩云, 等. 网约车出行需求预测方法[J]. 上海大学学报(自然科学版), 2020, 26(3): 328-341.
XI Y F, LIU Z K, YANG P Y, et al. Ride-hailing travel demand forecasting methods[J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(3): 328-341. (in Chinese)
|
[3] |
王迪, 李颖, 胡宇娇, 等. 基于机器学习的网约车拼车需求预测研究[J]. 汽车安全与节能学报, 2024, 15(5): 723-731.
WANG D, LI Y, HU J Y, et al. Research on carpooling demand prediction study based on machine learning[J]. Journal of Automotive Safety and Energy, 2024, 15(5): 723-731. (in Chinese)
|
[4] |
李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41 (3): 157-165, 174. doi: 10.3963/j.jssn.1674-4861.2023.03.017
LI Z H, SHEN T Y, WEN Y J, et al. Prediction of ride-hailing demand and identification of anomalies based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.017
|
[5] |
KIM T, SHARDA S, ZHOU X S, et al. A stepwise interpretable machine learning framework using linear regression (LR)and long short-term memory(LSTM): city-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV)service[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102786. doi: 10.1016/j.trc.2020.102786
|
[6] |
XU J, RAHMATIZADEH R, BOLONI L, et al. Real-time prediction of taxi demand using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2572-2581.
|
[7] |
LIPPI M, BERTINI M, FRASCONI P. An experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 871-882. doi: 10.1109/TITS.2013.2247040
|
[8] |
黄昕, 毛政元. 基于时空多图卷积网络的网约车乘客需求预测[J]. 地球信息科学学报, 2023, 25(2): 311-323.
HUANG X, MAO Z Y. Prediction of ride-hailing passenger demand based on spatio-temporal multi-graph convolutional networks[J]. Journal of Geo-Information Science, 2023, 25(2): 311-323(in Chinese).
|
[9] |
那绪博, 张莹, 李沐阳, 等. 基于ODCG的网约车需求预测模型[J]. 山东大学学报(工学版), 2023, 53(5): 48-56.
NA X B, ZHANG Y, LI M Y, et al. An online car-hailing demand forecasting model based on ODCG[J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 48-56. (in Chinese)
|
[10] |
高宇星, 宗威, 胡凯, 等. 基于CNN-ATTBiLSTM网约车需求短时预测[J]. 运筹与管理, 2024, 33(11): 211-217.
GAO Y X, ZONG W, HU K, et al. Short-term demand forecasting for online car-hailing based on CNN-ATTBiLSTM networks[J]. Operations Research and Management Science, 2024, 33(11): 211-217. (in Chinese)
|
[11] |
LIN Z H, LI M M, ZHENG Z B, et al. Self-attention convl-stm for spatiotemporal prediction[C]. 34th AAAI Conference on Artificial Intelligence, New York: AAAI, 2020.
|
[12] |
RODRIGUES F, PEREIRA F C. Beyond expectation: deep joint mean and quantile regression for spatiotemporal problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020(12): 1-13.
|
[13] |
GAWLIKOWSKI J, TASSI R N, ALI M, et al. A survey of uncertainty in deep neural networks[J]. Artificial Intelligence Review, 2023, 56: 1513-1589. doi: 10.1007/s10462-023-10562-9
|
[14] |
WU D, GAO L, CHINAZZI M, et al. Quantifying uncertainty in deep spatiotemporal forecasting[C]. 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore: ACM, 2021.
|
[15] |
GUO J H, WILLIAMS B M. Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters[J]. Transportation Research Record, 2010, 2175(1): 28-37. doi: 10.3141/2175-04
|
[16] |
LIU Y, LIU Z, LI X G, et al. Dynamic traffic demand uncertainty prediction using radio-frequency identification data and link volume data[J]. IET Intelligent Transport Systems, 2019, 13(8): 1309-1317. doi: 10.1049/iet-its.2018.5317
|
[17] |
CHEN Q X, LV B, HAO B B, et al. Modelling multiple quantiles together with the mean based on SA-ConvLSTM for taxi pick-up prediction[J]. IET Intelligent Transport Systems, 2022, 16(11): 1623-1632. doi: 10.1049/itr2.12238
|
[18] |
LIU G, WANG Y, QIN H, et al. Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method[J]. Renewable Energy, 2023, 209: 231-247. doi: 10.1016/j.renene.2023.03.094
|
[19] |
MALLICK T, MACFARLANE J, BALAPRAKASH P. Uncertainty quantification for traffic forecasting using deep-ensemble-based spatiotemporal graph neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9141-9152. doi: 10.1109/TITS.2024.3381099
|
[20] |
KHAN N, SHAHID S, JUNENG L, et al. Prediction of heat waves in Pakistan using quantile regression forests[J]. Atmospheric research, 2019, 221: 1-11. doi: 10.1016/j.atmosres.2019.01.024
|
[21] |
韩印, 李媛媛, 李文翔, 等. 基于轨迹数据的网约车排放时空特征分析[J]. 交通运输系统工程与信息, 2022, 22(1): 234-242.
HAN Y, LI Y Y, LI W X, et al. Analyzing spatiotemporal characteristics of ridesourcing emissions based on trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 234-242. (in Chinese)
|