Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
YAO Danyang, YUE Mingqi, ZHANG Xun, WU Fang, CHENG Shiming. A Model for Predicting Ship Emission Pollutants Based on MASTGCN Using AIS Information[J]. Journal of Transport Information and Safety, 2025, 43(2): 65-73. doi: 10.3963/j.jssn.1674-4861.2025.02.008
Citation: YAO Danyang, YUE Mingqi, ZHANG Xun, WU Fang, CHENG Shiming. A Model for Predicting Ship Emission Pollutants Based on MASTGCN Using AIS Information[J]. Journal of Transport Information and Safety, 2025, 43(2): 65-73. doi: 10.3963/j.jssn.1674-4861.2025.02.008

A Model for Predicting Ship Emission Pollutants Based on MASTGCN Using AIS Information

doi: 10.3963/j.jssn.1674-4861.2025.02.008
  • Received Date: 2024-09-04
    Available Online: 2025-09-29
  • Sulfur dioxide (SO2) emissions from ships are a major contributor to air pollution and ocean acidification, exhibiting significant spatial and temporal heterogeneity. Current prediction models for shipborne pollutants have limitations in modeling spatiotemporal dependencies, making it difficult to effectively capture the complex spatiotemporal correlation characteristics in SO2 emissions. To address this issue, based on automatic identification system (AIS) data and Chinese ship registry data, a dynamics-based method combined with emission factor approaches is used to quantify shipborne SO2 emissions during navigation, thereby providing a solid data foundation for subsequent prediction. In terms of model construction, a multi-head attention spatial-temporal graph convolutional network (MASTGCN) is proposed. Based on the spatial-temporal graph convolutional network (STGCN) architecture, MASTGCN incorporates multi-head self-attention mechanisms in both spatial and temporal dimensions. By dynamically allocating weights, it enhances the modeling capability to learn spatial dependencies across different regions and temporal dependencies across time intervals, thus improving the accuracy of spatiotemporal predictions for shipborne SO2 emissions. Experimental results show that when the number of attention heads is set to five, the model achieves a mean absolute error (MAE) of 0.057 5, mean squared error (MSE) of 0.120 6, root mean squared error (RMSE) of 0.347 3, and floating point operations (FLOPs) of 3 030 M. These results demonstrate superior overall performance in both accuracy and efficiency compared to other configurations and the baseline STGCN model. Specifically, MASTGCN with five attention heads outperforms STGCN by improving MAE by 27.6%, MSE by 6.0%, and RMSE by 1.3%. The findings indicate that the incorporation of multi-head attention mechanisms enables the model to effectively capture the spatial characteristics of SO2 emissions through dynamic weighting. The five-head MASTGCN model achieves excellent predictive accuracy while maintaining a relatively reasonable computational complexity.

     

  • loading
  • [1]
    STRIEBIG B, SMITTS E, MORTON S. Impact of transportation on carbon dioxide emissions from locally vs. non-locally sourced food[J]. Emerging Science Journal, 2019, 3(4): 222-234. doi: 10.28991/esj-2019-01184
    [2]
    李沁宇, 刘鑫, 张金池. 长三角区域酸雨类型转变趋势研究[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 168-174.

    LI Q Y, LIU X, ZHANG J C. Changing trends of acid rain types in the Yangtze River Delta region[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2021, 45 (1): 168-174. (in Chinese)
    [3]
    CAO Y, ZHANG W, WANG X, et al. The relationship be tween atmospheric pollutant emissions and fuel qualities of in land vessels in Jiangsu province, China[J]. Journal of the Air & Waste Management Association, 2019, 69(3): 305-312.
    [4]
    万霖, 何凌燕, 黄晓锋. 船舶大气污染排放的研究进展[J]. 环境科学与技术, 2013, 36(5): 57-62.

    WAN L, HE L Y, HUANG X F. Progress in research of air pollution emissions from ships[J]. Environmental Science & Technology, 2013, 36(5): 57-62. (in Chinese)
    [5]
    中华人民共和国生态环境部. 中国移动源环境管理年报(2023年)[J]. 环境保护, 2024, 52(2): 48-62.

    Ministry of Ecology and Environment of the People's Republic of China. China mobile source environmental management annual report in 2023[J]. Environmental Protection, 2024, 52 (2): 48-62(. in Chinese)
    [6]
    CIMORELLI A J, PERRY S G, VENKATRAM A, et al. AERMOD: a dispersion model for industrial source applications. Part Ⅰ: general model formulation and boundary layer characterization[J]. American Meteorological Society, 2005, 44(5): 682-693.
    [7]
    陈晓春, 李建晖, 陈少博, 等. 基于CALPUFF模型的山东省独立焦化行业大气污染物分析与预测[J]. 工程科学学报, 2024, 46(7): 1311-1323.

    CHEN X C, LI J H, CHEN S B, et al. Analysis and prediction of air pollutants in the independent coking industry in Shandong province based on the CALPUFF model[J]. Chinese Journal of Engineering, 2024, 46(7): 1311-1323. (in Chinese)
    [8]
    燕鸥, 王体健, 阮兆元, 等. 基于ADMS模型的工业园区VOCs排放源强反演[J]. 环境科学, 2025, 46(3): 1340-1349.

    YAN O, WANG T J, RUAN Z Y, et al. VOCs emission retrieval in industrial parks based on the ADMS mode[J]. Environmental Science, 2025, 46(3): 1340-1349. (in Chinese)
    [9]
    GARBATOV Y, GEORGIEV P. Stochastic air quality dispersion model for defining queuing ships seaport location[J]. Journal of Marine Science and Engineering, 2022, 10(2): 140-140. doi: 10.3390/jmse10020140
    [10]
    ABRUTYTĖ E, ŽUKAUSKAITĖ A, MICKEVIČIENĖ R, et al. Evaluation of NOx emission and dispersion from marine ships in Klaipeda sea port[J]. Journal of Environmental Engineering and Landscape Management, 2014, 22(4): 264-273. doi: 10.3846/16486897.2014.892009
    [11]
    TSENG Y L, CHENG W H, YUAN C S, et al. Impacts of ship emissions and sea-land breeze on urban air quality using chemical characterization, source contribution and dispersion model simulation of PM2.5 at Asian seaport[J]. Environmental Pollution, 2024, 347: 123663. doi: 10.1016/j.envpol.2024.123663
    [12]
    HONG H, CHOI I H, JEON H, et al. An air pollutants prediction method integrating numerical models and artificial intelligence models targeting the area around Busan port in Korea[J]. Atmosphere, 2022, 13(9): 1462-1462. doi: 10.3390/atmos13091462
    [13]
    XU H, WU L, XIONG S, et al. An improved CNN-LSTM model-based state-of-health estimation approach for lithiumion batteries[J]. Energy, 2023, 276: 127585. doi: 10.1016/j.energy.2023.127585
    [14]
    黄怡容, 熊秋林, 熊正坤, 等. 基于CNN-LSTM的鄱阳湖生态经济区大气污染物时空预测[J]. 生态环境学报, 2024, 33 (12): 1891-1901.

    HUANG Y R, XIONG Q L, XIONG Z K, et al. The spatiotemporal prediction of air pollutants in the Poyang Lake ecological economic zone based on CNN-LSTM[J]. Ecology and Environmental Sciences, 2024, 33(12): 1891-1901. (in Chinese)
    [15]
    QI Y, LI Q, KARIMIAN H, et al. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory[J]. Science of the Total Environment, 2019, 664: 1-10 doi: 10.1016/j.scitotenv.2019.01.333
    [16]
    马园. 基于深度学习的空气质量预测研究[D]. 济南: 山东大学, 2023.

    MA Y. Research on air quality prediction based on deep learning[D]. Jinan: Shandong University, 2023. (in Chinese)
    [17]
    黄敏, 杨亚东, 吴新鹏. 基于时空注意力机制的STA-GRU船舶轨迹预测方法[J]. 交通信息与安全, 2023, 41(6): 82-89. doi: 10.3963/j.jssn.1674-4861.2023.06.009

    HUANG M, YANG Y D, WU X P. Ship trajectory prediction method of gated recurrent unit based on spatial-temporal attention mechanism[J]. Journal of Transport Information and Safety, 2023, 41(6): 82-89. doi: 10.3963/j.jssn.1674-4861.2023.06.009
    [18]
    王征, 张卫, 彭传圣, 等. 中国近周边海域船舶排放清单及排放特征研究[J]. 交通节能与环保, 2018, 14(1): 11-15.

    WANG Z, ZHANG W, PENG C S, et al. Study on characteristics of ship emissions from surrounding China seas[J]. Transport Energy Conservation & Environmental Protection, 2018, 14(1): 11-15. (in Chinese)
    [19]
    朱倩茹, 廖程浩, 王龙, 等. 基于AIS数据的精细化船舶排放清单方法[J]. 中国环境科学, 2017, 37(12): 4493-4500.

    ZHU Q R, LIAO C H, WANG L, et al. Application of fine vessel emission inventory compilation method based on AIS data[J]. China Environmental Science, 2017, 37(12): 4493-4500. (in Chinese)
    [20]
    叶斯琪. 珠江三角洲地区船舶排放特征及对区域空气质量影响的研究[D]. 广州: 华南理工大学, 2014.

    YE S Q. Study of characteristics of marine vessel emission and its impact on regional air quality of the Pearl River Delta region[D]. Guangzhou: South China University of Technology, 2014. (in Chinese)
    [21]
    AGRAWAL H, EDEN R, ZHANG X, et al. Primary particulate matter from ocean-going engines in the southern California air basin[J]. Environmental Science & Technology, 2009, 43(14): 5398-5402.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (26) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return