Citation: | YAO Danyang, YUE Mingqi, ZHANG Xun, WU Fang, CHENG Shiming. A Model for Predicting Ship Emission Pollutants Based on MASTGCN Using AIS Information[J]. Journal of Transport Information and Safety, 2025, 43(2): 65-73. doi: 10.3963/j.jssn.1674-4861.2025.02.008 |
[1] |
STRIEBIG B, SMITTS E, MORTON S. Impact of transportation on carbon dioxide emissions from locally vs. non-locally sourced food[J]. Emerging Science Journal, 2019, 3(4): 222-234. doi: 10.28991/esj-2019-01184
|
[2] |
李沁宇, 刘鑫, 张金池. 长三角区域酸雨类型转变趋势研究[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 168-174.
LI Q Y, LIU X, ZHANG J C. Changing trends of acid rain types in the Yangtze River Delta region[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2021, 45 (1): 168-174. (in Chinese)
|
[3] |
CAO Y, ZHANG W, WANG X, et al. The relationship be tween atmospheric pollutant emissions and fuel qualities of in land vessels in Jiangsu province, China[J]. Journal of the Air & Waste Management Association, 2019, 69(3): 305-312.
|
[4] |
万霖, 何凌燕, 黄晓锋. 船舶大气污染排放的研究进展[J]. 环境科学与技术, 2013, 36(5): 57-62.
WAN L, HE L Y, HUANG X F. Progress in research of air pollution emissions from ships[J]. Environmental Science & Technology, 2013, 36(5): 57-62. (in Chinese)
|
[5] |
中华人民共和国生态环境部. 中国移动源环境管理年报(2023年)[J]. 环境保护, 2024, 52(2): 48-62.
Ministry of Ecology and Environment of the People's Republic of China. China mobile source environmental management annual report in 2023[J]. Environmental Protection, 2024, 52 (2): 48-62(. in Chinese)
|
[6] |
CIMORELLI A J, PERRY S G, VENKATRAM A, et al. AERMOD: a dispersion model for industrial source applications. Part Ⅰ: general model formulation and boundary layer characterization[J]. American Meteorological Society, 2005, 44(5): 682-693.
|
[7] |
陈晓春, 李建晖, 陈少博, 等. 基于CALPUFF模型的山东省独立焦化行业大气污染物分析与预测[J]. 工程科学学报, 2024, 46(7): 1311-1323.
CHEN X C, LI J H, CHEN S B, et al. Analysis and prediction of air pollutants in the independent coking industry in Shandong province based on the CALPUFF model[J]. Chinese Journal of Engineering, 2024, 46(7): 1311-1323. (in Chinese)
|
[8] |
燕鸥, 王体健, 阮兆元, 等. 基于ADMS模型的工业园区VOCs排放源强反演[J]. 环境科学, 2025, 46(3): 1340-1349.
YAN O, WANG T J, RUAN Z Y, et al. VOCs emission retrieval in industrial parks based on the ADMS mode[J]. Environmental Science, 2025, 46(3): 1340-1349. (in Chinese)
|
[9] |
GARBATOV Y, GEORGIEV P. Stochastic air quality dispersion model for defining queuing ships seaport location[J]. Journal of Marine Science and Engineering, 2022, 10(2): 140-140. doi: 10.3390/jmse10020140
|
[10] |
ABRUTYTĖ E, ŽUKAUSKAITĖ A, MICKEVIČIENĖ R, et al. Evaluation of NOx emission and dispersion from marine ships in Klaipeda sea port[J]. Journal of Environmental Engineering and Landscape Management, 2014, 22(4): 264-273. doi: 10.3846/16486897.2014.892009
|
[11] |
TSENG Y L, CHENG W H, YUAN C S, et al. Impacts of ship emissions and sea-land breeze on urban air quality using chemical characterization, source contribution and dispersion model simulation of PM2.5 at Asian seaport[J]. Environmental Pollution, 2024, 347: 123663. doi: 10.1016/j.envpol.2024.123663
|
[12] |
HONG H, CHOI I H, JEON H, et al. An air pollutants prediction method integrating numerical models and artificial intelligence models targeting the area around Busan port in Korea[J]. Atmosphere, 2022, 13(9): 1462-1462. doi: 10.3390/atmos13091462
|
[13] |
XU H, WU L, XIONG S, et al. An improved CNN-LSTM model-based state-of-health estimation approach for lithiumion batteries[J]. Energy, 2023, 276: 127585. doi: 10.1016/j.energy.2023.127585
|
[14] |
黄怡容, 熊秋林, 熊正坤, 等. 基于CNN-LSTM的鄱阳湖生态经济区大气污染物时空预测[J]. 生态环境学报, 2024, 33 (12): 1891-1901.
HUANG Y R, XIONG Q L, XIONG Z K, et al. The spatiotemporal prediction of air pollutants in the Poyang Lake ecological economic zone based on CNN-LSTM[J]. Ecology and Environmental Sciences, 2024, 33(12): 1891-1901. (in Chinese)
|
[15] |
QI Y, LI Q, KARIMIAN H, et al. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory[J]. Science of the Total Environment, 2019, 664: 1-10 doi: 10.1016/j.scitotenv.2019.01.333
|
[16] |
马园. 基于深度学习的空气质量预测研究[D]. 济南: 山东大学, 2023.
MA Y. Research on air quality prediction based on deep learning[D]. Jinan: Shandong University, 2023. (in Chinese)
|
[17] |
黄敏, 杨亚东, 吴新鹏. 基于时空注意力机制的STA-GRU船舶轨迹预测方法[J]. 交通信息与安全, 2023, 41(6): 82-89. doi: 10.3963/j.jssn.1674-4861.2023.06.009
HUANG M, YANG Y D, WU X P. Ship trajectory prediction method of gated recurrent unit based on spatial-temporal attention mechanism[J]. Journal of Transport Information and Safety, 2023, 41(6): 82-89. doi: 10.3963/j.jssn.1674-4861.2023.06.009
|
[18] |
王征, 张卫, 彭传圣, 等. 中国近周边海域船舶排放清单及排放特征研究[J]. 交通节能与环保, 2018, 14(1): 11-15.
WANG Z, ZHANG W, PENG C S, et al. Study on characteristics of ship emissions from surrounding China seas[J]. Transport Energy Conservation & Environmental Protection, 2018, 14(1): 11-15. (in Chinese)
|
[19] |
朱倩茹, 廖程浩, 王龙, 等. 基于AIS数据的精细化船舶排放清单方法[J]. 中国环境科学, 2017, 37(12): 4493-4500.
ZHU Q R, LIAO C H, WANG L, et al. Application of fine vessel emission inventory compilation method based on AIS data[J]. China Environmental Science, 2017, 37(12): 4493-4500. (in Chinese)
|
[20] |
叶斯琪. 珠江三角洲地区船舶排放特征及对区域空气质量影响的研究[D]. 广州: 华南理工大学, 2014.
YE S Q. Study of characteristics of marine vessel emission and its impact on regional air quality of the Pearl River Delta region[D]. Guangzhou: South China University of Technology, 2014. (in Chinese)
|
[21] |
AGRAWAL H, EDEN R, ZHANG X, et al. Primary particulate matter from ocean-going engines in the southern California air basin[J]. Environmental Science & Technology, 2009, 43(14): 5398-5402.
|