Citation: | ZHANG Xi, SONG Mingtao, HUANG Yanni, CHEN Feng. Analysis of the Autonomous Truck Platoon's Fuel Consumption Considering Morphological Parameters[J]. Journal of Transport Information and Safety, 2025, 43(1): 152-160. doi: 10.3963/j.jssn.1674-4861.2025.01.014 |
[1] |
ZHANG W, JENELIUS E, MA X L. Freight transport platoon coordination and departure time scheduling under travel time uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 98: 1-23. doi: 10.1016/j.tre.2016.11.008
|
[2] |
张泽锡, 钟文健, 林柏梁. 带时间窗的卡车编队路径优化[J]. 交通运输系统工程与信息, 2022, 22(5): 253-263.
ZHANG X Z, ZHONG W J, LIN B L. Optimization of truck platooning routing with time windows[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 253-263. (in Chinese)
|
[3] |
FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181. doi: 10.1016/j.tra.2015.04.003
|
[4] |
胡笳, 安连华, 李欣. 面向新型混合交通流的快速路合流区通行能力建模[J]. 交通信息与安全. 2021, 39(1): 137-144. doi: 10.3963/j.jssn.1674-4861.2021.01.016
HU J, AN L H, LI X. A capacity model of freeway merging areas with partially connected automated traffic[J]. Journal of Transport Information and Safety, 2021, 39(1): 137-144. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.016
|
[5] |
BHOOPALAM A K, AGATZ N, ZUIDWIJK R. Planning of truck platoons: a literature review and directions for future research[J]. Transportation Research Part B: Methodological, 2018, 107: 212-228. doi: 10.1016/j.trb.2017.10.016
|
[6] |
HUSSEIN A A, RAKHA H A. Vehicle platooning impact on drag coefficients and energy/fuel saving implications[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 1199-1208.
|
[7] |
TSUGAWA S, Results and issues of an automated truck platoon within the energy its project[C]. IEEE Intelligent Vehicles Symposium, Michigan, USA: IEEE, 2014.
|
[8] |
NUSZKOWSKI J, SMITH H, MCKINNEY M, et al. Increasing the on-road fuel economy by trailing at a safe distance[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2017, 231(9): 1303-1311. doi: 10.1177/0954407017703233
|
[9] |
HUMPHREYS H, BEVLY D. Computational fluid dynamic analysis of a generic 2 truck platoon[C]. Commercial Vehicle Engineering Congress, Illinois, USA: SAE, 2016.
|
[10] |
贺宝琴, 吴允柱, 傅立敏. 汽车外形对智能车辆队列行驶气动特性的影响[J]. 吉林大学学报(工学版), 2008, 38(1): 7-11.
HE B Q, WU Y Z, HE L M. Influence of vehicle shape on the aerodynamic characteristics of intelligent vehicle platoon[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(1): 7-11. (in Chinese)
|
[11] |
SONG M T, CHEN F, MA X X. Organization of autonomous truck platoon considering energy saving and pavement fatigue[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102667. doi: 10.1016/j.trd.2020.102667
|
[12] |
RAJAMANI G. CFD analysis of air flow interactions in vehicle platoons[D]. Melbourne: RMIT University, 2006.
|
[13] |
张璐, 张兆磊, 刘至真, 等. 考虑智能网联汽车通信延时的混合交通流稳定性分析[J]. 交通信息与安全. 2024, 42(2): 95-104. doi: 10.3963/j.jssn.1674-4861.2024.02.010
ZHANG L, ZHANG Z L, LIU Z Z, et al. A stability analysis of mixed traffic flows considering communication delay of connected and autonomous vehicles[J]. Journal of Transport Information and Safety, 2024, 42(2): 95-104. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.02.010
|
[14] |
GUNGOR O E, AL-QADI I L. All for one: centralized optimization of truck platoons to improve roadway infrastructure sustainability[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 84-98. doi: 10.1016/j.trc.2020.02.002
|
[15] |
CHEN F, SONG M T, MA X X, et al. Assess the impacts of different autonomous trucks' lateral control modes on asphalt pavement performance[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 17-29. doi: 10.1016/j.trc.2019.04.001
|
[16] |
张凯歌. 重型卡车气动性能优化与实验研究[D]. 长沙: 湖南大学, 2016.
ZHANG K G. The aerodynamic performance optimization and experiment study of heavy-duty truck[D]. Changsha: Hunan University, 2016. (in Chinese)
|
[17] |
傅立敏, 贺宝琴, 吴允柱, 等. 队列行驶车辆间距对气动特性的影响[J]. 汽车工程, 2007, 29(5): 365-368. doi: 10.3321/j.issn:1000-680X.2007.05.001
FU L M, HE B Q, WU Y Z, et al. The influence of inter-vehicle distance on aerodynamic characteristics of vehicle platoon[J]. Automotive Engineering, 2007, 29(5): 365-368. (in Chinese) doi: 10.3321/j.issn:1000-680X.2007.05.001
|
[18] |
宋明涛, 陈丰. 自动驾驶对沥青面层寿命及养护成本影响分析[J]. 中国公路学报, 2022, 35(10): 125-134. doi: 10.3969/j.issn.1001-7372.2022.10.012
SONG M T, CHEN F. Influence of autonomous vehicles on service life and maintenance cost of asphalt pavements[J]. China Journal of Highway and Transport, 2022, 35(10): 125-134. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.10.012
|
[19] |
全国汽车标准化技术委员会. 重型商用车辆燃料消耗量测量方法: GB/T 27840-2021[S]. 北京: 中国标准出版社, 2019.
National Technical Committee of Auto Standardization. Fuel consumption test methods for heavy-duty commercial vehicles: GB/T 27840-2021[S]. Beijing: Standards Press of China, 2019. (in Chinese)
|
[20] |
罗沂. 基于GPS数据的高速公路驾驶行为识别[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LUO Y. Expressway driving behavior recognition based on GPS data[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[21] |
中华人民共和国交通运输部. 公路路线设计规范: JTG D20-2017[S]. 北京: 人民交通出版社, 2017.
Ministry of Transport of the People's Republic of China. Design specification for highway alignment: JTG D20-2017[S]. Beijing: China Communications Press, 2017. (in Chinese)
|
[22] |
BONNET C, FRITZ H. Fuel consumption reduction experienced by two promote- chauffeur trucks in electronic towbar operation[C]. The 7th World Congress on Intelligent Systems, Turin, Italy: IEEE, 2000.
|
[23] |
BROWAND F, MCARTHUR J, RADOVICH C. Fuel saving achieved in the field test of two tandem trucks[R]. California: University of Southern California, 2004.
|
[24] |
TSUGAWA S. An overview on an automated truck platoon within the Energy ITS Project[J]. IFAC Proceedings Volumes, 2013, 46(21): 41-46. doi: 10.3182/20130904-4-JP-2042.00110
|
[25] |
MATTHEW E, IVAN G J, RAJA S. Aerodynamic drag and engine cooling effects on class 8 trucks in platooning configurations[J]. SAE International Journal of Commercial Vehicles, 2015, 8(2): 732-739. doi: 10.4271/2015-01-2896
|
[26] |
VEGENDLA P, SOFU T, SAHA R, et al. Investigation of aerodynamic influence on truck platooning[R]. Detroit: Society of Automotive Engineers, 2015.
|
[27] |
BISHOP R, BEVLY D, HUMPHREYS L, et al. Evaluation and testing of driver-assistive truck platooning: Phase 2 final results[J]. Journal of the Transportation Research Board, 2017, 2615(1): 11-18. doi: 10.3141/2615-02
|
[28] |
孙立军. 铺面工程学[M]. 上海: 同济大学出版社, 2012.
SUN L J. Pavement engineering[M]. Shanghai: Tongji University Press, 2012. (in Chinese)
|
[29] |
CHEN F, SONG M T, MA X X. A lateral control scheme of autonomous vehicles considering pavement sustainability[J]. Journal of Cleaner Production, 2020, 256: 120669. doi: 10.1016/j.jclepro.2020.120669
|
[30] |
NOORVAND H, KARNATI G, UNDERWOOD BS. Autonomous vehicles: assessment of the implications of truck positioning on flexible pavement performance and design[J]. Transportation Research Record, 2017, 2640: 21-28. doi: 10.3141/2640-03
|
[31] |
AHMED SR, RAMM G, FAITIN G. Some salient features of the time-averaged ground vehicle wake[J]. SAE transactions. 1984, 473-503.
|