Volume 43 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
LONG Xueqin, MAO Jianxu, ZHAI Manrong, WANG Yuanze. A Free Lane-changing Decision Model Considering the Driving Style and the Interaction with Peripheral Vehicles[J]. Journal of Transport Information and Safety, 2025, 43(1): 141-151. doi: 10.3963/j.jssn.1674-4861.2025.01.013
Citation: LONG Xueqin, MAO Jianxu, ZHAI Manrong, WANG Yuanze. A Free Lane-changing Decision Model Considering the Driving Style and the Interaction with Peripheral Vehicles[J]. Journal of Transport Information and Safety, 2025, 43(1): 141-151. doi: 10.3963/j.jssn.1674-4861.2025.01.013

A Free Lane-changing Decision Model Considering the Driving Style and the Interaction with Peripheral Vehicles

doi: 10.3963/j.jssn.1674-4861.2025.01.013
  • Received Date: 2024-07-06
    Available Online: 2025-06-27
  • The interactions between lane-changing vehicle and peripheral vehicles will influence the lane-changing decision behavior. In response to this, a lane-changing decision model that integrates driving styles and interactions is developed based on the lane-changing utility. Utilizing the extreme gradient boosting (XGBoost) algorithm and the density-based spatial clustering of applications with noise (DBSCAN) clustering method, drivers' short-term driving styles are categorized into conservative, typical, and aggressive types. Based on traffic conflicts of trajectories, the spatiotemporal overlap points between vehicles are determined to classify interactions. A utility quantification model is constructed across three dimensions: speed enhancement, spatial safety, and temporal safety. The weights of three sub-utilities are calculated based on MIC, then a total utility model for lane-changing decision is established. Using historical data, the total utilities of lane-changing drivers are computed in comparison to that of lane-keeping drivers, resulting in the identification of lane-changing utility thresholds. Thereby rules for lane-changing decision are formulated. The result of model's accuracy indicates that the model considering interactions significantly outperforms the model that does not, underscoring the importance of interactions in lane-changing decision. Predictions of lane-changing behavior are conducted using the radial basis function (RBF) model and XGBoost model. For conservative, typical, and aggressive drivers, accuracies of the RBF method are 0.885, 0.820, and 0.813, while the XGBoost method achieves accuracies of 0.954, 0.902, and 0.900. AI models demonstrate high predictive accuracies for lane-changing decision across all driver types. However, the predictive accuracies for the typical and aggressive drivers are lower than that of the decision model proposed in this paper (0.921 and 0.923, respectively). Additionally, non-parametric statistical tests of lane-changing utilities further validate the rationality of the model.

     

  • loading
  • [1]
    GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1 986, 20(5): 403-414.
    [2]
    KESTING A, TREIBER M, HELBING D. General lane-changing model MOBIL for car-following models[J]. Transportation Research Record, 2007, 1999(1): 86-94. doi: 10.3141/1999-10
    [3]
    杨达, 吕蒙, 戴力源, 等. 车联网环境下自动驾驶车辆车道选择决策模型[J]. 中国公路学报, 2022, 35(4): 243-255. doi: 10.3969/j.issn.1001-7372.2022.04.020

    YANG D, LYU M, DAI L Y, et al. Decision model for lane selection of autonomous vehicles in the vehicle environment[J]. Highway Journal of China, 2022, 35(4): 243-255. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.04.020
    [4]
    曲大义, 张可琨, 顾原, 等. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710.

    QU D Y, ZHANG K K, GU Y, et al. Analysis of lane change decision behavior and molecular dynamics modeling of autonomous vehicles[J]. Journal of Jilin University(Engineering Edition), 2024, 54(3): 700-710. (in Chinese)
    [5]
    邓建华, 冯焕焕. 基于换道决策机理的多车道元胞自动机模型[J]. 交通运输系统工程与信息, 2018, 18(3): 68-73.

    DENG J H, FENG H H. Multi-lane cellular automaton model based on lane change decision mechanism[J]. Transportation System Engineering and Information, 2018, 18(3): 68-73. (in Chinese)
    [6]
    秦雅琴, 王锦锐, 谢济铭, 等. 基于动态行车安全间距的交织区换道模型[J]. 安全与环境学报, 2023, 23(6): 1926-1934.

    QIN Y Q, WANG J R, XIE J M, et al. Interwoven area lane changing model based on dynamic traffic safety distance[J]. Journal of Safety and the Environment, 2023, 23(6): 1926-1934. (in Chinese)
    [7]
    TOLEDO T, KOUTSOPOULOS H N, BEN-AKIVA M E. Modeling integrated lane-changing behavior[J]. Journal of the Transportation Research Board, 2003(1857): 30-38
    [8]
    李林恒, 甘婧, 曲栩, 等. 智能网联环境下基于安全势场理论的车辆换道模型[J]. 中国公路学报, 2021, 34(6): 184-195.

    LI L H, GAN J, QU X, et al. Vehicle lane change model based on safety potential field theory in an intelligent connected environment[J]. Highway Journal of China, 2021, 34(6): 184-195. (in Chinese)
    [9]
    郭海兵, 曲大义, 洪家乐, 等. 基于效用理论的车辆换道交互行为及决策模型[J]. 科学技术与工程, 2020, 20(29): 12185-12190. doi: 10.3969/j.issn.1671-1815.2020.29.053

    GUO H B, QU D Y, HONG J L, et al. Vehicle lane change interaction behavior and decision model based on utility theory[J]. Science, Technology and Engineering, 2020, 20(29): 12185-12190. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.29.053
    [10]
    陆春意, 何赏璐, 高彬彬, 等. 基于博弈论的自动驾驶驶离专用车道换道决策模型[J]. 交通信息与安全, 2024, 42(4): 144-153, 174.

    LU C Y, HE S L, GAO B B, et al. The decision model of autonomous driving leaving the dedicated lane based on game theory[J]. Traffic Information and Safety, 2024, 42(4): 144-153, 174. (in Chinese)
    [11]
    SCHUBERT R, WANIELIK G. A unified Bayesian approach for object and situation assessment[J]. Intelligent Transportation Systems Magazine, IEEE Intelligent Transportation Systems Magazine, 2011, 3(2): 6-19. doi: 10.1109/MITS.2011.941331
    [12]
    谷新平, 韩云鹏, 于俊甫. 基于决策机理与支持向量机的车辆换道决策模型[J]. 哈尔滨工业大学学报, 2020, 52(7): 111-121.

    GU X P, HAN Y P, YU J F. Vehicle lane change decision model based on decision mechanism and support vector machine[J]. Journal of Harbin Institute of Technology, 2020, 52(7): 111-121. (in Chinese)
    [13]
    徐兵, 刘潇, 汪子扬, 等. 采用梯度提升决策树的车辆换道融合决策模型[J]. 浙江大学学报(工学版), 2019, 53(6): 1171-1181.

    XU B, LIU X, WANG Z Y, et al. A vehicle lane change fusion decision model using a gradient lift decision tree[J]. Journal of Zhejiang University (Engineering Edition), 2019, 53(6): 1171-1181. (in Chinese)
    [14]
    张鑫辰, 张军, 刘元盛, 等. 改进深度Q网络的无人车换道决策算法研究[J]. 计算机工程与应用, 2022, 58(7): 266-275.

    ZHANG X C, ZHANG J, LIU Y S, et al. Research on improving the decision algorithm of unmanned vehicle in deep Q network[J]. Computer Engineering and Application, 2022, 58(7): 266-275. (in Chinese)
    [15]
    侯海晶, 金立生, 关志伟, 等. 驾驶风格对驾驶行为的影响[J]. 中国公路学报, 2018, 31(4): 18-27.

    HOU H J, JIN L S, GUAN Z W, et al. Effect of driving style on driving behavior[J]. Highway Journal of China, 2018, 31(4): 18-27. (in Chinese)
    [16]
    冯焕焕, 邓建华, 葛婷. 引入驾驶风格的熵权法多属性换道决策模型[J]. 交通运输系统工程与信息, 2020, 20(2): 139-144.

    FENG H H, DENG J H, GE T. The entropy-weight decision model of driving style is introduced[J]. Transportation System Engineering and Information, 2020, 20(2): 139-144. (in Chinese)
    [17]
    李珂, 韩同群, 杨正才, 等. 基于驾驶人心理风险场模型的个性化换道决策方法[J]. 交通信息与安全, 2023, 41(6): 32-41. doi: 10.3963/j.jssn.1674-4861.2023.06.004

    LI K, HAN T Q, YANG Z C, et al. A personalized lane change decision method based on driver's psychological risk field model[J]. Journal of Transport Information and Safety, 2023, 41(6): 32-41. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.004
    [18]
    曲大义, 陈文娇, 杨万三, 等. 车辆换道交互行为分析和建模[J]. 公路交通科技, 2016, 33(6): 88-94.

    QYU D Y, CHEN W J, YANG W S, et al. Analysis and modeling of vehicle lane change interaction behavior[J]. Highway Traffic Technology, 2016, 33(6): 88-94. (in Chinese)
    [19]
    杨志强, 朱家伟, 穆蕾, 等. 基于高斯混合隐马尔科夫模型的自由换道识别[J]. 计算机系统应用, 2022, 31(8): 388-394.

    YANG Z Q, ZHU J W, MU L, et al. Free-change identification based on Gaussian mixed hidden Markov model[J]. Application of Computer Systems, 2022, 31(8): 388-394. (in Chinese)
    [20]
    汪猛. 基于高精度数据的换车道行为特征研究[D]. 长沙: 湖南大学, 2017.

    WANG M. Study on the behavior characteristics of lane changing based on high-precision data[D]. Changsha: Hunan University, 2017. (in Chinese)
    [21]
    董俊一. 考虑驾驶风格的智能驾驶换道决策模型研究[D]. 长春: 吉林大学, 2022.

    DONG J Y. Study of intelligent driving considering driving style[D]. Changchun: Jilin University, 2022. (in Chinese)
    [22]
    ALI Y, ZHENG Z, HAQUE M M, et al. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 220-242.
    [23]
    孙一. 考虑自车与交通车行为交互的自动驾驶换道轨迹规划策略研究[D]. 长春: 吉林大学, 2023.

    SUN Y. Research on lane changing trajectory planning strategy of autonomous driving considering the behavioral interaction between self-vehicle and traffic vehicle[D]. Changchun: Jilin University, 2023. (in Chinese)
    [24]
    李高伟, 傅成红, 高良鹏. 人机混驾交通流跟驰特性建模与仿真研究[J/OL]. (2024-04-10)[2024-06-22]. http://kns.cnki.net/kcms/detail/42.1824.U.20240409.1159.030.html.

    LI G W, FU C H, GAO L P. Modeling and simulation of man-driving traffic flow and characteristics[J/OL]. (2024-04-10)[2024-06-22]. http://kns.cnki.net/kcms/detail/42.1824.U.20240409.1159.030.html.
    [25]
    洪家乐, 曲大义, 贾彦峰, 等. 基于驾驶人反应特性的车辆跟驰行为及模型[J]. 青岛理工大学学报, 2021, 42(4): 108-114, 142.

    HONG J L, QU D Y, JIA Y F, et al. Vehicle following behavior and model based on driver reaction characteristics[J]. Journal of Qingdao University of Technology, 2021, 42(4): 108-114, 142. (in Chinese)
    [26]
    朱煦晗. 智能汽车换道决策与轨迹规划算法研究[D]. 长春: 吉林大学, 2021.

    ZHU X H. Research on lane change decision and trajectory planning algorithm for intelligent vehicles[D]. Changchun: Jilin University, 2021. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article Metrics

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return