Citation: | REN Boxi, SUN Youchao, LIU Weicheng, ZENG Zhe, ZENG Yining. A Human Machine Function Allocation Model Based on Queue Scheduling Algorithm in the Cockpit of a Civil Aircraf[J]. Journal of Transport Information and Safety, 2025, 43(1): 107-119. doi: 10.3963/j.jssn.1674-4861.2025.01.010 |
[1] |
王菲茵, 袁锦彤, 汪磊. 典型机型冲偏出跑道耦合故障模式及风险建模[J]. 交通信息与安全, 2023, 41(6): 42-50. doi: 10.3963/j.jssn.1674-4861.2023.06.005
WANG F Y, YUANG J T, WANG L. Coupling failure mode and risk modeling of typical aircrafts runway excursion[J]. Journal of Transport Information and Safety, 2023, 41(6): 42-50. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.005
|
[2] |
Boeing. Statistical summary of commercial jet airplane accidents worldwide operations 1959-2019[R]. Washington, D.C. : Boing Company, 2020.
|
[3] |
王文跃, 王刚, 靳捷, 等. 基于模型的载人月球探测人机功能分配方法研究[J]. 载人航天, 2024, 30(5): 684-692. doi: 10.3969/j.issn.1674-5825.2024.05.016
WANG W Y, WANG G, JIN J. Research on model-based human-machine function allocation method for manned lunar exploration[J]. Manned Spaceflight, 2024, 30(5): 684-692. (in Chinese) doi: 10.3969/j.issn.1674-5825.2024.05.016
|
[4] |
ATASHFESHAN N, SAIDI-MEHRABAD M, RAZAVI H. A novel dynamic function allocation method in human-machine systems focusing on trigger mechanism and allocation strategy[J]. Reliability Engineering & System Safety, 2021, 207: 107337.
|
[5] |
WANG Q, WAN Y, FENG F, et al. Threshold optimization of task allocation models in human-machine collaborative scoring of subjective assignments[J]. Computers & Industrial Engineering, 2024, 188: 109923.
|
[6] |
HOGENBOOM S, ROKSETH B, VINNEM J E, et al. Human reliability and the impact of control function allocation in the design of dynamic positioning systems[J]. Reliability Engineering & System Safety, 2020, 194: 106340.
|
[7] |
XIAO Y, YANG S, XU Z, et al. A human-machine collaboration frame in daylighting optimization of semi-outdoor space design by using phased synergistic method: a case study[J]. Journal of Building Engineering, 2023, 79: 107879. doi: 10.1016/j.jobe.2023.107879
|
[8] |
BERNABEI M, COSTANTINO F. Design a dynamic automation system to adaptively allocate functions between humans and machines[J]. IFAC-PapersOnLine, 2023, 56(2): 3528-3533. doi: 10.1016/j.ifacol.2023.10.1509
|
[9] |
ZHANG Y, LU J, XIA G, et al. Human-machine shared control for industrial vehicles: a personalized driver behavior recognition and authority allocation scheme[J]. IEEE Transactions on Intelligent Vehicles, 2024: 1-12.
|
[10] |
WANG H, FENG L, ZHANG Y, et al. Human-machine authority allocation in indirect cooperative shared steering control with TD3 reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 7576-7588. doi: 10.1109/TVT.2024.3352047
|
[11] |
XIN Y, KAM K H, Qinbiao L I, et al. Exploring the human-centric interaction paradigm: augmented reality-assisted head-up display design for collaborative human-machine interface in cockpit[J]. Advanced Engineering Informatics, 2024, 62: 102656. doi: 10.1016/j.aei.2024.102656
|
[12] |
REN M, CHEN N, QIU H. Human-machine collaborative decision-making: an evolutionary roadmap based on cognitive intelligence[J]. International Journal of Social Robotics, 2023, 15(7): 1101-1114. doi: 10.1007/s12369-023-01020-1
|
[13] |
王东. 基于信息流和控制流的飞行员工作负荷研究[D]. 上海: 上海交通大学, 2013.
WANG D. Pilot workload research based on information and control flow[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
|
[14] |
郑弋源. 民用飞机驾驶舱人机交互机理与评价方法研究[D]. 上海: 上海交通大学, 2015.
ZHENG Y Y. Human machine interaction mechanism and measurement in commercial aircraft flight deck[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
|
[15] |
刘承平, 肖旭, 赵竞全. 基于认知过程的飞行员脑力负荷动态预测[J]. 北京航空航天大学学报, 2023, 49(11): 2921-2928.
LIU C P, XIAO X, ZHAO J Q. Pilots'mental workload dynamic prediction based on cognitive process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 2921-2928. (in Chinese)
|
[16] |
SOCHA V, SOCHA L, HANAKOVA L, et al. Pilots'performance and workload assessment: transition from analogue to glass-cockpit[J]. Applied Sciences, 2020, 10(15): 5211. doi: 10.3390/app10155211
|
[17] |
NIU K, FANG W, SONG Q, et al. An evaluation method for emergency procedures in automatic metro based on complexity[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 22(1): 370-383.
|
[18] |
PARK J, JUNG W, HA J. Development of the step complexity measure for emergency operating procedures using entropy concepts[J]. Reliability Engineering & System Safety, 2001, 71: 115-130.
|
[19] |
PARASURAMAN R, SHERIDAN T B, WICKENS C D. A model for types and levels of human interaction with automation[J]. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and Humans, 2000, 30(3): 286-297.
|
[20] |
ZHANG A, BI W, TANG Z, et al. Human-machine function allocation method for aircraft cockpit based on interval 2-tuple linguistic information[J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1291-1302.
|
[21] |
孙丽, 孙有朝. 基于负荷均衡的飞机驾驶舱动态功能分配[J]. 测控技术, 2022, 41(1): 11-15, 27.
SUN L, SUN Y C. Dynamic function allocation of flight deck based on load balancing[J]. Measurement & Control Technology, 2022, 41(1): 11-15, 27. (in Chinese)
|
[22] |
ZHAN T, ZHOU J, LI Z, et al. Generalized information entropy and generalized information dimension[J]. Chaos, Solitons & Fractals, 2024, 184: 114976.
|
[23] |
ZHANG X, SUN Y, ZHANG Y. A task modeling method of intelligent human-computer interaction in aircraft cockpits based on information load flow[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5619-5634.
|
[24] |
SKIBSKI O. Closeness centrality via the condorcet principle[J]. Social Networks, 2023, 74: 13-18.
|
[25] |
MLIN R, LI C, QIU Y, et al. Can high-speed rail promote regional technological innovation? An explanation based on city network centrality[J]. Research in Transportation Business & Management, 2024, 57: 101245.
|
[26] |
GHUANG S, WANG P, HUA Z, et al. Structural characteristics and spatiotemporal changes of a reticular river network based on complex network theory[J]. Journal of Hydrology, 2024, 638: 131577.
|
[27] |
LIU J, ZHOU M, WANG S, et al. A comparative study of network robustness measures[J]. Frontiers of Computer Science, 2017, 11(4): 568-584.
|
[28] |
赖金志. 队列调度算法的研究与逻辑实现[D]. 西安: 西安电子科技大学, 2009
LAI J Z. Research and design of queue scheduling algorithm. [D]. Xi'an: Xidian University, 2009. (in Chinese)
|
[29] |
李秉权, 张松, 王兆伟, 等. WFQ与WRR调度算法的性能分析与改进[J]. 北京理工大学学报, 2015, 35(3): 316-320.
LI B Q, ZHANG S, WANG Z W, et al. Performance analysis and improvement about WFQ and WRR schedule algorithm[J]. Transactions of Beijing Institute of Technology, 2015, 35(3): 316-320. (in Chinese)
|
[30] |
International Civil Aviation Organization. Safety Report 2023[R]. Montréal: International Civil Aviation Organization, 2024.
|
[31] |
SCHVANEVELDT R W, BERINGER D B, LAMONICA J A. Priority and organization of information accessed by pilots in various phases of flight[J]. The International Journal of Aviation Psychology, 2001, 11(3): 253-280.
|
[32] |
JIN H, HU Z, LI K, et al. Study on how expert and novice pilots can distribute their visual attention to improve flight performance[J]. IEEE Access, 2021, 9: 44757-44769.
|
[33] |
中国人民解放军总装备部. 歼击机飞行员脑力负荷评价模型: GJB 5204-2004[S]. 北京: 总装备部军标出版发行部, 2004.
General Armaments Department of the People's Libe. Model for evaluation of mental workload of fighter pilots: GJB 5204-2004[S]. Beijing: General Equipment Department Military Standard Publishing and Distribution Department, 2004. (in Chinese)
|