Volume 43 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
ZHANG Kairui, LU You, LYU Nengchao. EEMD-PE-LSTM Based Traffic State Prediction Method for Freeway Section[J]. Journal of Transport Information and Safety, 2025, 43(1): 85-96. doi: 10.3963/j.jssn.1674-4861.2025.01.008
Citation: ZHANG Kairui, LU You, LYU Nengchao. EEMD-PE-LSTM Based Traffic State Prediction Method for Freeway Section[J]. Journal of Transport Information and Safety, 2025, 43(1): 85-96. doi: 10.3963/j.jssn.1674-4861.2025.01.008

EEMD-PE-LSTM Based Traffic State Prediction Method for Freeway Section

doi: 10.3963/j.jssn.1674-4861.2025.01.008
  • Received Date: 2024-06-12
    Available Online: 2025-06-27
  • The rapid development of the highway network and the diversification of traffic demand have made traffic congestion, road carrying capacity bottlenecks, road design optimization and other issues more and more prominent. This seriously restricts the travelling experience of travelers and the service effectiveness of traffic management departments. To accurately quantify the gain of traffic conditions and weather conditions on the prediction performance of traffic flow parameters, we a combined prediction model of traffic flow parameters of highway sections construct based on the ensemble empirical modal decomposition (EEMD), permutation entropy (PE) and long short-term memory (LSTM). The study applies the EEMD algorithm to decompose the average travelling speed sequence, screens and integrates the decomposed components through the PE algorithm and proposes to perform spatio-temporal matching and feature grouping of the traffic and weather data to identify the most influential factors and their interaction modes; combined with the sliding time window strategy, the input configurations are dynamically adjusted. With the LSTM network as the core, the optimal history sequence length and feature combination are determined by iterative optimizations, and then the optimal value of the average driving speed of the target road section is obtained. At the same time, the regional characteristic-oriented traffic state determination mechanism is proposed, i.e., the 85% quartile of the average driving speed of the road section is adopted as the normal speed benchmark. Taking a highway in Hubei Province as a case study, the empirical results show that: in terms of prediction accuracy, compared with a single LSTM model, the average absolute error of the combined prediction model is significantly reduced by 73.4%; in terms of computational efficiency, it is improved by 67% compared with the EEMD-LSTM model. Especially when the length of the sliding time window is 40 min, the combined model maintains the lowest prediction error under various types of travelling scenarios and diversified feature inputs, showing good stability and robustness. In addition, the model incorporating traffic conditions reduces the prediction error range by about 60% compared to the model relying only on historical speed sequences, highlighting the key role of traffic factors in speed prediction. This study can provide scientific management decision support for traffic management departments during peak traffic periods, special events, and traffic accident emergencies.

     

  • loading
  • [1]
    MAGI A, SIL G, TYAGI A. 85th and 98th percentile speed prediction models of car, light, and heavy commercial vehicles for four-lane divided rural highways[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(5): 04018009. doi: 10.1061/JTEPBS.0000136
    [2]
    SIL G, NAMA S, MAGI A, et al. Effect of horizontal curve geometry on vehicle speed distribution: a four-lane divided highway study[J]. Transportation Letters, 2020, 12(10): 713-722. doi: 10.1080/19427867.2019.1695562
    [3]
    SATHIARAJ D, PUNKASEM T, WANG F, et al. Data-driven analysis on the effects of extreme weather elements on traffic volume in Atlanta, GA, USA[J]. Computers, Environment and Urban Systems, 2018, 72: 212-220. doi: 10.1016/j.compenvurbsys.2018.06.012
    [4]
    袁振洲, 胡嫣然, 杨洋. 考虑多维动态特征交互的高速公路实时事故风险建模[J]. 交通运输系统工程与信息, 2022, 22 (3): 215-223.

    YUAN Z Z, HU Y R, YANG Y. Real-time highway accident risk modeling considering multi-dimensional dynamic feature interaction[J]. Transportation Systems Engineering and Information, 2022, 22(3): 215-223. (in Chinese)
    [5]
    李硕, 马玉坤, 韩晖, 等. 山区高速公路货车事故严重度致因及随机参数分析[J]. 公路交通科技, 2023, 40(4): 228-236. doi: 10.3969/j.issn.1002-0268.2023.04.028

    LI S, MA Y K, HAN H, et al. Analysis of causation and random parameters of truck accident severity on mountain expressway[J]. Highway Transportation Science and Technology, 2023, 40(4): 228-236. (in Chinese) doi: 10.3969/j.issn.1002-0268.2023.04.028
    [6]
    孙静怡, 牟若瑾, 刘拥华. 考虑大型车因素的支持向量机短时交通状态预测模型研究[J]. 公路交通科技, 2018, 35(10): 126-132.

    SUN J Y, MOU R J, LIU Y H. Research on short-time traffic state prediction model by support vector Machine considering large vehicle factors[J]. Highway Transportation Science and Technology, 2018, 35(10): 126-132. (in Chinese)
    [7]
    李维佳, 王建军, 白骅, 等. 路网环境下考虑大型车混入率的事故疏散诱导模型[J]. 中国公路学报, 2020, 33(11): 275-284.

    LI W J, WANG JJ, BAI H, et al. Accident evacuation guidance model considering the mixing rate of large vehicles in road network environment[J]. China Journal of Highway and Transportation, 2020, 33(11): 275-284. (in Chinese)
    [8]
    SONG Z, GUO Y, WU Y, et al. Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model[J]. PloS one, 2019, 14(6): e0218626. doi: 10.1371/journal.pone.0218626
    [9]
    XU D, WANG Y, JIA L, et al. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18: 287-302.
    [10]
    EMAMI A, SARVI M, BAGLOEE S A. Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors[J]. Simulation Modelling Practice and Theory, 2020, 102: 102025. doi: 10.1016/j.simpat.2019.102025
    [11]
    廖荣华, 兰时勇, 刘正熙. 基于混沌时间序列局域法的短时交通流预测[J]. 计算机技术与发展, 2015(1): 1-5.

    LIAO R H, LAN S Y, LIU Z X. Short-term traffic flow prediction based on chaotic time series local method[J]. Computer Technology and Development, 2015(1): 1-5. (in Chinese)
    [12]
    吴晋武, 张海峰, 冉旭东. 基于数据约减和支持向量机的非参数回归短时交通流预测算法[J]. 公路交通科技, 2020, 37 (7): 129-134.

    WU J W, ZHANG H F, RAN X D. Non-parametric regression short-term traffic flow prediction algorithm based on data reduction and support vector machine[J]. Journal of Highway and Transportation Science and Technology, 2020, 37 (7): 129-134. (in Chinese)
    [13]
    翁剑成, 陈旭蕊, 潘晓芳, 等. 基于超参数优化WOA-Bi-LSTM模型的客运枢纽抵站客流预测方法[J]. 交通信息与安全, 2023, 41(5): 148-157. doi: 10.3963/j.jssn.1674-4861.2023.05.015

    WENG J C, CHEN X R, PAN X F, et al. Prediction method of passenger arrivals at passenger hubs based on hyperparameter optimization WOA-Bi-LSTM model[J]. Traffic Information and Safety, 2023, 41(5): 148-157. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.015
    [14]
    FUKUDA S, UCHIDA H, FUJⅡ H, et al. Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation[J]. IET Intelligent Transport Systems, 2020, 14(8): 936-946.
    [15]
    张文松, 姚荣涵. 基于时空特性和组合深度学习的交通流参数估计[J]. 交通运输系统工程与信息, 2021, 21(1): 82-89.

    ZHANG W S, YAO R H. Traffic flow parameter estimation based on spatiotemporal characteristics and combined deep learning[J]. Transportation Systems Engineering and Information, 2021, 21(1): 82-89. (in Chinese)
    [16]
    刘清梅, 万明, 严利鑫, 等. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002

    LIU Q M, WAN M, YAN L X, et al. Road traffic accident prediction based on ensemble empirical mode decomposition for noise reduction and LSTM optimization[J]. Traffic Information and Safety, 2023, 41(5): 12-23. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.002
    [17]
    田佳, 王德勇, 师文喜. 基于集合经验模态分解和随机森林的短时交通流预测[J]. 科学技术与工程, 2023, 23(29): 12612-12619.

    TIAN J, WANG D Y, SHI W X. Short-term traffic flow prediction based on ensemble empirical mode decomposition and random forest[J]. Science Technology and Engineering, 2023, 23(29): 12612-12619. (in Chinese)
    [18]
    TIAN Z, LI S, WANG Y. A prediction approach using ensemble empirical mode decomposition-permutation entropy and regularized extreme learning machine for short-term wind speed[J]. Wind Energy, 2020, 23(2): 177-206.
    [19]
    过加锦, 李磊, 任俞霏, 等. 融合信号分解与排列熵的高铁线路风速区间预测方法[J]. 交通科技与经济, 2023, 25(4): 74-80.

    GUO JJ, LI L, REN Y F, et al. Wind speed interval prediction method of high-speed railway line with signal decomposition and arrangement entropy[J]. Transportation Science and Economics, 2023, 25(4): 74-80. (in Chinese)
    [20]
    周翔宇, 吉哲, 王凤武. 基于EEMD-PE-LSTM的短时船舶交通流量预测与航道交通状态可视化[J]. 大连海事大学学报, 2023, 49(2): 58-68.

    ZHOU X Y, JI Z, WANG F W. Short-time ship traffic flow prediction and waterway traffic state visualization based on EEMD-PE-LSTM[J]. Journal of Dalian Maritime University, 2023, 49(2): 58-68. (in Chinese)
    [21]
    中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. GB/T 28592-2012降水量等级[S]. 北京: 中国标准出版社, 2012.

    The General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, the Standardization Administration of China. GB/T 28592-2012 precipitation grade[S]. Beijing: Standards Press of China, 2012. (in Chinese)
    [22]
    中国气象局. QX/T114-2010能见度等级和预报[S]. 北京: 中国标准出版社, 2012.

    China Meteorological Administration. QX/T114-2010 Visibility rating and forecast[S]. Beijing: Standards Press of China, 2012. (in Chinese)
    [23]
    李秉晨, 于惠钧, 刘靖宇. 基于K-means和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.

    LI B C, YU H J, LIU J Y. Short-term PV power prediction based on K-means and CEEMD-PE-LSTM[J]. Hydropower Energy Science, 2021, 39(4): 204-208. (in Chinese)
    [24]
    交通运输部. 公路网运行监测与服务暂行技术要求(2012年第3号公告)[S]. 北京: 人民交通出版社, 12: 25-26.

    Ministry of Transport. Provisional technical requirements for highway network operation monitoring and service (Announcement No. 3 of 2012)[S]. Beijing: People's Communications Press, 12: 25-26. (in Chinese)
    [25]
    重庆市交通运行监测与应急调度中心. 重庆高速公路交通量综合统计数据标准[EB/OL]. (2021-03-16)[2024-04-30]. https://www.doczj.com/doc/b515781756.html.

    Chongqing Traffic Operation Monitoring and Emergency Dispatching Center. Chongqing highway traffic comprehensive statistics standard[EB/OL]. (2021-03-16)[2024-04-30]. https://www.doczj.com/doc/b515781756.html. (in Chinese)
    [26]
    ABDULJABBAR R L, DIA H, TSAI P W. Unidirectional and bidirectional LSTM models for short-term traffic prediction[J]. Journal of Advanced Transportation, 2021, 2021(1): 5589075.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(8)

    Article Metrics

    Article views (22) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return