Citation: | ZHANG Kairui, LU You, LYU Nengchao. EEMD-PE-LSTM Based Traffic State Prediction Method for Freeway Section[J]. Journal of Transport Information and Safety, 2025, 43(1): 85-96. doi: 10.3963/j.jssn.1674-4861.2025.01.008 |
[1] |
MAGI A, SIL G, TYAGI A. 85th and 98th percentile speed prediction models of car, light, and heavy commercial vehicles for four-lane divided rural highways[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(5): 04018009. doi: 10.1061/JTEPBS.0000136
|
[2] |
SIL G, NAMA S, MAGI A, et al. Effect of horizontal curve geometry on vehicle speed distribution: a four-lane divided highway study[J]. Transportation Letters, 2020, 12(10): 713-722. doi: 10.1080/19427867.2019.1695562
|
[3] |
SATHIARAJ D, PUNKASEM T, WANG F, et al. Data-driven analysis on the effects of extreme weather elements on traffic volume in Atlanta, GA, USA[J]. Computers, Environment and Urban Systems, 2018, 72: 212-220. doi: 10.1016/j.compenvurbsys.2018.06.012
|
[4] |
袁振洲, 胡嫣然, 杨洋. 考虑多维动态特征交互的高速公路实时事故风险建模[J]. 交通运输系统工程与信息, 2022, 22 (3): 215-223.
YUAN Z Z, HU Y R, YANG Y. Real-time highway accident risk modeling considering multi-dimensional dynamic feature interaction[J]. Transportation Systems Engineering and Information, 2022, 22(3): 215-223. (in Chinese)
|
[5] |
李硕, 马玉坤, 韩晖, 等. 山区高速公路货车事故严重度致因及随机参数分析[J]. 公路交通科技, 2023, 40(4): 228-236. doi: 10.3969/j.issn.1002-0268.2023.04.028
LI S, MA Y K, HAN H, et al. Analysis of causation and random parameters of truck accident severity on mountain expressway[J]. Highway Transportation Science and Technology, 2023, 40(4): 228-236. (in Chinese) doi: 10.3969/j.issn.1002-0268.2023.04.028
|
[6] |
孙静怡, 牟若瑾, 刘拥华. 考虑大型车因素的支持向量机短时交通状态预测模型研究[J]. 公路交通科技, 2018, 35(10): 126-132.
SUN J Y, MOU R J, LIU Y H. Research on short-time traffic state prediction model by support vector Machine considering large vehicle factors[J]. Highway Transportation Science and Technology, 2018, 35(10): 126-132. (in Chinese)
|
[7] |
李维佳, 王建军, 白骅, 等. 路网环境下考虑大型车混入率的事故疏散诱导模型[J]. 中国公路学报, 2020, 33(11): 275-284.
LI W J, WANG JJ, BAI H, et al. Accident evacuation guidance model considering the mixing rate of large vehicles in road network environment[J]. China Journal of Highway and Transportation, 2020, 33(11): 275-284. (in Chinese)
|
[8] |
SONG Z, GUO Y, WU Y, et al. Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model[J]. PloS one, 2019, 14(6): e0218626. doi: 10.1371/journal.pone.0218626
|
[9] |
XU D, WANG Y, JIA L, et al. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18: 287-302.
|
[10] |
EMAMI A, SARVI M, BAGLOEE S A. Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors[J]. Simulation Modelling Practice and Theory, 2020, 102: 102025. doi: 10.1016/j.simpat.2019.102025
|
[11] |
廖荣华, 兰时勇, 刘正熙. 基于混沌时间序列局域法的短时交通流预测[J]. 计算机技术与发展, 2015(1): 1-5.
LIAO R H, LAN S Y, LIU Z X. Short-term traffic flow prediction based on chaotic time series local method[J]. Computer Technology and Development, 2015(1): 1-5. (in Chinese)
|
[12] |
吴晋武, 张海峰, 冉旭东. 基于数据约减和支持向量机的非参数回归短时交通流预测算法[J]. 公路交通科技, 2020, 37 (7): 129-134.
WU J W, ZHANG H F, RAN X D. Non-parametric regression short-term traffic flow prediction algorithm based on data reduction and support vector machine[J]. Journal of Highway and Transportation Science and Technology, 2020, 37 (7): 129-134. (in Chinese)
|
[13] |
翁剑成, 陈旭蕊, 潘晓芳, 等. 基于超参数优化WOA-Bi-LSTM模型的客运枢纽抵站客流预测方法[J]. 交通信息与安全, 2023, 41(5): 148-157. doi: 10.3963/j.jssn.1674-4861.2023.05.015
WENG J C, CHEN X R, PAN X F, et al. Prediction method of passenger arrivals at passenger hubs based on hyperparameter optimization WOA-Bi-LSTM model[J]. Traffic Information and Safety, 2023, 41(5): 148-157. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.015
|
[14] |
FUKUDA S, UCHIDA H, FUJⅡ H, et al. Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation[J]. IET Intelligent Transport Systems, 2020, 14(8): 936-946.
|
[15] |
张文松, 姚荣涵. 基于时空特性和组合深度学习的交通流参数估计[J]. 交通运输系统工程与信息, 2021, 21(1): 82-89.
ZHANG W S, YAO R H. Traffic flow parameter estimation based on spatiotemporal characteristics and combined deep learning[J]. Transportation Systems Engineering and Information, 2021, 21(1): 82-89. (in Chinese)
|
[16] |
刘清梅, 万明, 严利鑫, 等. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002
LIU Q M, WAN M, YAN L X, et al. Road traffic accident prediction based on ensemble empirical mode decomposition for noise reduction and LSTM optimization[J]. Traffic Information and Safety, 2023, 41(5): 12-23. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.002
|
[17] |
田佳, 王德勇, 师文喜. 基于集合经验模态分解和随机森林的短时交通流预测[J]. 科学技术与工程, 2023, 23(29): 12612-12619.
TIAN J, WANG D Y, SHI W X. Short-term traffic flow prediction based on ensemble empirical mode decomposition and random forest[J]. Science Technology and Engineering, 2023, 23(29): 12612-12619. (in Chinese)
|
[18] |
TIAN Z, LI S, WANG Y. A prediction approach using ensemble empirical mode decomposition-permutation entropy and regularized extreme learning machine for short-term wind speed[J]. Wind Energy, 2020, 23(2): 177-206.
|
[19] |
过加锦, 李磊, 任俞霏, 等. 融合信号分解与排列熵的高铁线路风速区间预测方法[J]. 交通科技与经济, 2023, 25(4): 74-80.
GUO JJ, LI L, REN Y F, et al. Wind speed interval prediction method of high-speed railway line with signal decomposition and arrangement entropy[J]. Transportation Science and Economics, 2023, 25(4): 74-80. (in Chinese)
|
[20] |
周翔宇, 吉哲, 王凤武. 基于EEMD-PE-LSTM的短时船舶交通流量预测与航道交通状态可视化[J]. 大连海事大学学报, 2023, 49(2): 58-68.
ZHOU X Y, JI Z, WANG F W. Short-time ship traffic flow prediction and waterway traffic state visualization based on EEMD-PE-LSTM[J]. Journal of Dalian Maritime University, 2023, 49(2): 58-68. (in Chinese)
|
[21] |
中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. GB/T 28592-2012降水量等级[S]. 北京: 中国标准出版社, 2012.
The General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, the Standardization Administration of China. GB/T 28592-2012 precipitation grade[S]. Beijing: Standards Press of China, 2012. (in Chinese)
|
[22] |
中国气象局. QX/T114-2010能见度等级和预报[S]. 北京: 中国标准出版社, 2012.
China Meteorological Administration. QX/T114-2010 Visibility rating and forecast[S]. Beijing: Standards Press of China, 2012. (in Chinese)
|
[23] |
李秉晨, 于惠钧, 刘靖宇. 基于K-means和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y. Short-term PV power prediction based on K-means and CEEMD-PE-LSTM[J]. Hydropower Energy Science, 2021, 39(4): 204-208. (in Chinese)
|
[24] |
交通运输部. 公路网运行监测与服务暂行技术要求(2012年第3号公告)[S]. 北京: 人民交通出版社, 12: 25-26.
Ministry of Transport. Provisional technical requirements for highway network operation monitoring and service (Announcement No. 3 of 2012)[S]. Beijing: People's Communications Press, 12: 25-26. (in Chinese)
|
[25] |
重庆市交通运行监测与应急调度中心. 重庆高速公路交通量综合统计数据标准[EB/OL]. (2021-03-16)[2024-04-30].
Chongqing Traffic Operation Monitoring and Emergency Dispatching Center. Chongqing highway traffic comprehensive statistics standard[EB/OL]. (2021-03-16)[2024-04-30].
|
[26] |
ABDULJABBAR R L, DIA H, TSAI P W. Unidirectional and bidirectional LSTM models for short-term traffic prediction[J]. Journal of Advanced Transportation, 2021, 2021(1): 5589075.
|