Citation: | ZHANG Jinfeng, QIAO Fuqi, MA Weihao, ZHANG Yueqi, XIONG Maolin, WANG Yuchuan. Multi-objective Route Optimization of Wind-assisted Ships Considering Sail Angle-of-attach Control[J]. Journal of Transport Information and Safety, 2025, 43(1): 74-84. doi: 10.3963/j.jssn.1674-4861.2025.01.007 |
[1] |
TSITSILONIS K M, THEOTOKATOS G. A novel systematic methodology for ship propulsion engines energy management[J]. Journal of Cleaner Production, 2018, 204: 212-236. doi: 10.1016/j.jclepro.2018.08.154
|
[2] |
International Maritime Organization. Initial IMO strategy on reduction of GHG emissions from ships[R]. London: International Maritime Organization, 2018.
|
[3] |
陈弓, 朱宇, 韩冰. 绿色航运能源技术现状及发展趋势分析[J]. 交通信息与安全. 2023, 41(2): 168-78. doi: 10.3963/j.jssn.1674-4861.2023.02.018
CHEN G, ZHU Y, HAN B. A Study on the status quo and trend of green energy technology for shipping industry[J]. Journal of Transport Information and Safety, 2023;41(2): 168-78. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.018
|
[4] |
陈鲁愚, 陈顺怀, 严新平. 大型远洋风帆助航船舶节能效率分析[J]. 船海工程, 2010, 39(6): 121-123, 128.
CHEN L Y, CHEN S H, YAN X P, et al. Analysis of energy-saving efficiency of large ocean-going sailing auxiliary ships[J]. Ship and Ocean Engineering, 2010, 39(6): 121-123, 128. (in Chinese)
|
[5] |
LI Y, QIAO C. A route optimization method based on simulated annealing algorithm for wind-assisted ships[C]. IOP Conference Series: Earth and Environmental Science, Guangzhou: IOP, China, 2019.
|
[6] |
CORNO M, FORMENTIN S, SAVARESI S M. Data-driven online speed optimization in autonomous sailboats[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17 (3): 762-771. http://www.onacademic.com/detail/journal_1000038735623110_153b.html
|
[7] |
WANG K, XUE Y, XU H, et al. Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping[J]. Energy, 2022, 245: 123155. doi: 10.1016/j.energy.2022.123155
|
[8] |
陈登, 张文斌, 蒋永旭, 等. 助航风帆对客滚船稳性影响分析[J]. 船海工程, 2024, 53(6): 31-35.
CHEN D, ZHANG W B, JIANG Y X, et al. On the influence of booster wind-sails upon stability of the ropax ships[J]. Ship & Ocean Engineering, 2024, 53(6): 31-35. (in Chinese)
|
[9] |
黎晓武, 陈纪军, 潘子英, 等. 翼型风帆技术能效评估研究[J]. 科技创新与应用, 2025, 15(3): 124-128.
LI X W, CHEN J J, PAN Z Y, et al. Energy efficiency assessment study of wing sail technology[J]. Technology Innovation and Application, 2025, 15(3): 124-128. (in Chinese)
|
[10] |
李元奎. 风力助航船舶航线优化模型及智能算法研究[D]. 大连: 大连海事大学, 2014.
LI Y K. Study on route optimization model and intelligent algorithm for wind-assisted navigation ships[D]. Dalian: Dalian Maritime University, 2014. (in Chinese)
|
[11] |
常志东. 基于智能算法的风力助航船舶航线优化[J]. 舰船科学技术, 2022, 44(9): 83-86.
CHANG Z D. Route optimization of wind-assisted navigation ships based on intelligent algorithms[J]. Ship Science and Technology, 2022, 44(9): 83-86. (in Chinese)
|
[12] |
WANG K, GUO X, ZHAO J, et al. An integrated collaborative decision-making method for optimizing energy consumption of sail-assisted ships towards low-carbon shipping[J]. Ocean Engineering, 2022, 266: 112810. doi: 10.1016/j.oceaneng.2022.112810
|
[13] |
王端伟. 考虑实况气象的风力助航船舶航线优化[J]. 珠江水运, 2023(1): 70-72.
WANG D W. Optimization of wind-assisted ship routes considering real weather conditions[J]. Pearl River Water Transport, 2023(1): 70-72. (in Chinese)
|
[14] |
MA R, WANG Z, WANG K, et al. Evaluation method for energy saving of sail-assisted ship based on wind resource analysis of typical route[J]. Journal of Marine Science and Engineering, 2023, 11(4): 789. http://www.mdpi.com/2233414
|
[15] |
马琳, 杨平. 基于反向传播神经网络的分航段船舶油耗预测模型[J]. 中国航海, 2024, 47(4): 168-174.
MA L, YANG P. Segmental prediction model of ship fuel consumption based on backpropagation neural networks[J]. Navigation of China, 2024, 47(4): 168-174. (in Chinese)
|
[16] |
索基源, 李元奎, 崔金龙, 等. 基于XGBoost算法的船舶油耗预测模型[J]. 中国航海, 2024, 47(2): 153-159.
SUO J Y, LI Y K, CUI J L, et al. Ship fuel consumption prediction model based on XGBoost algorithm[J]. Navigation of China, 2024, 47(2): 153-159. (in Chinese)
|
[17] |
乔磊, 尹奇志, 姚昌宏, 等. 基于BSO-BP的船舶油耗预测模型[J]. 上海海事大学学报, 2024, 45(2): 29-34.
QIAO L, YIN Q Z, YAO C H, et al. Prediction model of ship fuel consumption based on BSO-BP[J]. Journal of Shanghai Maritime University, 2024, 45(2): 29-34. (in Chinese)
|
[18] |
MA Y, BI H, HU M, et al. Hard sail optimization and energy efficiency enhancement for sail-assisted vessel[J]. Ocean Engineering, 2019, 173: 687-699. http://www.onacademic.com/detail/journal_1000041592510099_4c3c.html
|
[19] |
曹雪玲, 陈爱国, 林鸿杰, 等. 风力助航船舶翼型帆的动力特性分析[J]. 广东造船, 2021, 40(2): 16-19.
CAO X L, CHEN A G, LIN H J, et al. Analysis of the aerodynamic characteristics of the wing sail of wind-assisted ships[J]. Guangdong Shipbuilding, 2021, 40(2): 16-19. (in Chinese)
|
[20] |
池华方, 周健, 朱鹏莅. 风帆助航船舶能效控制系统研究[J]. 交通节能与环保, 2018, 14(5): 29-33.
CHI H F, ZHOU J, ZHU P L. Study on energy efficiency control system of wind-assisted navigation ships[J]. Traffic Energy Conservation and Environmental Protection, 2018, 14 (5): 29-33. (in Chinese)
|
[21] |
马伟皓. 排放控制区约束下集装箱班轮多层次运输优化策略研究[D]. 杭州: 浙江大学, 2023.
MA W H. Research on multi-level transportation optimization strategy of container liner under the constraint of emission control area[D]. Hangzhou: Zhejiang University, 2023. (in Chinese)
|
[22] |
董思邑. 风翼助航船舶的航速航线联合优化方法研究[D]. 大连: 大连海事大学, 2022.
DONG S Y. Research on the joint optimization method of speed and route for wind-wing assisted navigation ships[D]. Dalian: Dalian Maritime University, 2022. (in Chinese)
|
[23] |
李明峰, 王胜正, 谢宗轩. 恶劣气象海况下船舶航线的多变量多目标优化建模[J]. 中国航海, 2020, 43(2): 14-19, 30.
LI M F, WANG S Z, XIE Z X. Multivariable and multi-objective optimization modeling of ship routes under adverse meteorological sea conditions[J]. Navigation of China, 2020, 43(2): 14-19, 30. (in Chinese)
|
[24] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. http://www.researchgate.net/profile/Pouria_Ahmadi/post/Where_can_I_get_multiobjective_optimization_test_problems_equations_used_in_NSGA-III_paper/attachment/5ae31604b53d2f63c3c872ca/AS%3A620003443372033%401524831748096/download/DEB.pdf
|