Citation: | WANG Tianshuo, GAO Jingbo, TONG Shengjun, LI Zhenglong, ZHAO Xiaohua. SMOTE-LSTM Vehicle Accident Detection Method for Imbalanced Data[J]. Journal of Transport Information and Safety, 2025, 43(1): 52-60. doi: 10.3963/j.jssn.1674-4861.2025.01.005 |
[1] |
KOVÁCS G. An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets[J]. Applied Soft Computing, 2019, 83: 105662-105662. doi: 10.1016/j.asoc.2019.105662
|
[2] |
YU H, NI J, ZHAO J. ACOSampling: an ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data[J]. Neurocomputing, 2013, 101(2): 309-318.
|
[3] |
ZHU Z, WANG Z, LI D, et al. Geometric structural ensemble learning for imbalanced problems[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 1-13. doi: 10.1109/TCYB.2017.2771059
|
[4] |
YU H, SUN C, YANG X, et al. Fuzzy support vector machine with relative density information for classifying imbalanced data[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(12): 2353-2367. doi: 10.1109/TFUZZ.2019.2898371
|
[5] |
罗秀玲, 陈欢, 冯川. 基于RF-fpgrowth算法的道路营运车辆交通事故特征挖掘[J]. 交通科技与管理, 2024, 5(24): 26-29.
LUO X L, CHEN H, FENG C. Traffic accident feature mining of road operation vehicles based on the RF-fpgrowth algorithm[J]. Traffic Technology and Management, 2024, 5(24): 26-29(. in Chinese)
|
[6] |
LEE I J. An accident detection system on highway using vehicle tracking trace[C]. International Conference on ICT Convergence, Jeju, South Korea: IEEE, 2011.
|
[7] |
刘倩, 王雪松. 交叉口自动驾驶车辆事故前场景生成与致因分析[J]. 中国公路学报, 2024, 37(4): 297-309.
LIU Q, WANG X S. Generation of pre-accident scenarios and causal analysis for autonomous vehicles at intersections[J]. Journal of China Highway and Transport, 2024, 37(4): 297-309(. in Chinese)
|
[8] |
OZBAYOGLU M, KUCUKAYAN G, DOGDU E. A real - time autonomous highway accident detection model based on big data processing and computational intelligence[C]. IEEE International Conference on Big Data, Washington, D.C. IEEE, 2017.
|
[9] |
陈俊宇, 李金龙, 许伦辉, 等. 基于ADASYN-XGBoost的交通事故自动检测方法[J]. 交通信息与安全, 2023, 41(3): 12-22. doi: 10.3963/j.jssn.1674-4861.2023.03.002
CHEN J Y, LI J L, XU L H, et al. Automatic traffic accident detection method based on ADASYN-XGBoost[J]. Journal of Transport Information and Safety, 2023, 41(3): 12-22. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.002
|
[10] |
王晨, 周威, 严隽逸, 等. 一种用于道路交通事故自动检测的改进双流网络[J]. 中国公路学报, 2023, 36(5): 185-196.
WANG C, ZHOU W, YAN J Y, et al. An improved dual-stream network for automatic traffic accident detection[J]. Journal of China Highway and Transport, 2023, 36(5): 185-196(. in Chinese)
|
[11] |
ZUALKERNAN I A, ALOUL F A, BASHEER F, et al. Intelligent accident detection classification using mobile phones[C]. 2018 International Conference on Information Networking(ICOIN), Chiang Mai: IEEE, 2018.
|
[12] |
ALI H M, ALWAN Z S. Car accident detection and notification system using smartphone[M]. Saarbrucken: Lap Lambert Academic Publishing, 2017.
|
[13] |
DOGRU N. SUBASI A. Traffic accident detection using ran-dom forest classifier[C]. 2018 15th Learning and Technology Conference, Jeddah: IEEE, 2018.
|
[14] |
FERNANDES B, ALAM M, GOMES V, et al. Automatic accident detection with multi - modal alert system implementation for ITS[J]. Vehicular Communications, 2016(3): 1-11.
|
[15] |
KIMACHI M, KANAYAMA K, TERAMOTO K. Incident prediction by fuzzy image sequence analysis[C]. Vehicle Navigation and Information Systems Conference, Boston: IEEE, 1994.
|
[16] |
KAMIJO S K, MATSUSHITA Y, IKEUCHI K, et al. Traffic monitoring and accident detection at intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(2): 108-118. doi: 10.1109/6979.880968
|
[17] |
PICIARELLI C, MICHELONI C, FORESTI G L. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1544-1554. doi: 10.1109/TCSVT.2008.2005599
|
[18] |
CHAKRABORTY P, SHARMA A, HEGDE C. Freeway traffic incident detection from cameras: a semi - supervised learning approach[C]. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui: IEEE, 2018.
|
[19] |
CHONG Y S, TAY Y H. Abnormal event detection in videos using spatiotemporal autoencoder[C]. 14th International Symposium on Neural Networks, Japan: IEEE, 2017.
|
[20] |
阎莹, 王玉莹, 周旋, 等. 基于混合模型的自动驾驶车辆事故严重程度影响因素分析[J/OL]. 交通运输工程学报, 1-16[2025-02-20].
YAN Y, WANG Y Y, ZHOU X, et al. Analysis of factors influencing accident severity for autonomous vehicles based on a mixed model[J/OL]. Journal of Traffic and Transportation Engineering, 1-16 [2025-02-20].
|
[21] |
OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus: IEEE, 2014.
|
[22] |
方昊, 李云. 基于多次随机欠采样和POSS方法的软件缺陷检测[J]. 山东大学学报: 工学版, 2017, 47(1): 15-21.
FANG H, LI Y. Software defect detection based on multiple random undersampling and POSS method[J]. Journal of Shandong University: Engineering and Technology Edition, 2017, 47(1): 15-21. (in Chinese)
|
[23] |
MOREO A, ESULI A, SEBASTIANI F. Distributional random oversampling for imbalanced text classification[C]. 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa: ACM, 2016.
|
[24] |
章缙, 李洪赭, 李赛飞. 针对基于随机森林的网络入侵检测模型的优化研究[J]. 计算机与数字工程, 2022, 50(1): 106-110.
ZHANG J, LI H Z, LI S F. Research on optimization of network intrusion detection model based on random forest[J]. Computer and Digital Engineering, 2022, 50(1): 106-110. (in Chinese)
|
[25] |
LUCA S, CLIFTON D A, VANRUMSTE B. One-class classification of point patterns of extremes[J]. Journal of Machine Learning Research, 2016, 17(1): 6581-6601.
|
[26] |
陈志, 郭武. 不平衡训练数据下的基于深度学习的文本分类[J]. 小型微型计算机系统, 2020, 41(1): 1-5.
CHEN Z, GUO W. Text classification based on deep learning with unbalanced training data[J]. Journal of Computer Applications, 2020, 41(1): 1-5. (in Chinese)
|