Citation: | YANG Houxin, LU Liping, QIN Heng, YANG Ao, CHU Duanfeng. Driving Collision Risk Modeling with Trajectory Prediction of Obstacle Vehicles[J]. Journal of Transport Information and Safety, 2025, 43(1): 42-51. doi: 10.3963/j.jssn.1674-4861.2025.01.004 |
[1] |
JIYANG G, CHEN S, HANG Z, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, USA: IEEE, 2020.
|
[2] |
ZHAO H, GAO J, LAN T, et al. Tnt: Target-driven trajectory prediction[C]. Conference on Robot Learning, London, UK: PMLR, 2021.
|
[3] |
GU J, SUN C, ZHAO H. Densetnt: end-to-end trajectory prediction from dense goal sets[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada: IEEE, 2021.
|
[4] |
LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]. 16th European Conference, Glasgow, UK: ECCV, 2020.
|
[5] |
BHATTACHARYYA P, HUANG C, CZARNECKI K. Ssl-lanes: self-supervised learning for motion forecasting in autonomous driving[C]. Conference on Robot Learning, Seoul, Korea: PMLR, 2023.
|
[6] |
ZHOU Z, YE L, WANG J, et al. Hivt: hierarchical vector transformer for multi-agent motion prediction[C]. The IEEE/ CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA : IEEE, 2022.
|
[7] |
FAHMY H M, ABD EL GHANY M A, BAUMANN G. Vehicle risk assessment and control for lane-keeping and collision avoidance at low-speed and high-speed scenarios[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 4806-4818. doi: 10.1109/TVT.2018.2807796
|
[8] |
WU B, YAN Y, NI D, et al. A longitudinal car-following risk assessment model based on risk field theory for autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10(1): 60-68. doi: 10.1016/j.ijtst.2020.05.005
|
[9] |
CHIA W M D, KEOH S L, MICHALA A L, et al. Real-time recursive risk assessment framework for autonomous vehicle operations[C]. 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland: IEEE, 2021.
|
[10] |
王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016(1): 105-114.
WANG J Q, WU J, LI Y. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016(1): 105-114. (in Chinese)
|
[11] |
LI L, GAN J, ZHOU K, et al. A novel lane-changing model of connected and automated vehicles: using the safety potential field theory[J]. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125039. doi: 10.1016/j.physa.2020.125039
|
[12] |
田野, 裴华鑫, 晏松, 等. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022 (3): 447-457.
TIAN Y, PEI H X, YAN S, et al. Extended driving risk field model for i-VICS and its application[J]. Journal of Tsinghua University(Science and Technology), 2022(3): 447-457. (in Chinese)
|
[13] |
KATRAKAZAS C, QUDDUS M, CHEN W H. A new integrated collision risk assessment methodology for autonomous vehicles[J]. Accident Analysis & Prevention, 2019, 127: 61-79.
|
[14] |
LEDENT P, PAIGWAR A, RENZAGLIA A, et al. Formal validation of probabilistic collision risk estimation for autonomous driving[C]. 9th IEEE International Conference on Cybernetics and Intelligent SystemsRobotics, Automation and Mechatronics(RAM), Bangkok, Thailand: IEEE, 2019.
|
[15] |
STRICKLAND M, FAINEKOS G, AMOR H B. Deep predictive models for collision risk assessment in autonomous driving[C]. 2018 IEEE International Conference on Robotics and Automation(ICRA), Brisbane, Australia: IEEE, 2018.
|
[16] |
汪磊, 李蕊君, 王菲茵. 基于QAR数据与互信息法的进近风险评估模型[J]. 交通信息与安全, 2024, 42(4): 21-29, 41. doi: 10.3963/j.jssn.1674-4861.2024.04.003
WANG Q, LI R J, WANG F Y. Approach risk assessment model based on QAR data and mutual information method[J]. Journal of Transport Information and Safety, 2024, 42(4): 21-29, 41. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2024.04.003
|
[17] |
赵睿, 李云, 胡宏宇, 等. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.
ZHAO R, LI Y, HU H Y, et al. Vehicle collision warning method at intersection based on V2I communication[J]. Journal of Jilin University(Engineering Science), 2023, 53(4): 1019-1029. (in Chinese)
|
[18] |
KRAMER B, NEUROHR C, BÜKER M, et al. Identification and quantification of hazardous scenarios for automated driving[C]. 7th International Symposium on Model-based Safety and assessment. Cham, Germany: Springer International Publishing, 2020.
|
[19] |
CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]. The IEEE/CVF conference on computer vision and pattern recognition, Long Beach, USA: IEEE, 2019.
|
[20] |
YE M, CAO T, CHEN Q. Tpcn: temporal point cloud net-works for motion forecasting[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition: IEEE, 2021.
|
[21] |
褚端峰, 彭赛骞, 胡海洋, 等. 预见性驾驶风险场模型[J]. 机械工程学报, 2024, 60(10): 160-170.
CHU D F, PENG S Q, HU H Y, et al. Predictive driving risk field model[J]. Journal of Mechanical Engineering, 2024, 60(10): 160-170. (in Chinese)
|
[22] |
LOPEZ A, PABLO, BEHRISCH, et al. Microscopic traffic simulation using sumo[C]. 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, Hawaii, USA: IEEE, 2018.
|