Volume 42 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
BING Qichun, ZHAO Panpan, REN Canzheng, WANG Xueqian, ZHAO Yiming. A Short-term Traffic Flow Prediction Method Based on Time Series Data Decomposition and Reconstruction[J]. Journal of Transport Information and Safety, 2024, 42(6): 112-122. doi: 10.3963/j.jssn.1674-4861.2024.06.012
Citation: BING Qichun, ZHAO Panpan, REN Canzheng, WANG Xueqian, ZHAO Yiming. A Short-term Traffic Flow Prediction Method Based on Time Series Data Decomposition and Reconstruction[J]. Journal of Transport Information and Safety, 2024, 42(6): 112-122. doi: 10.3963/j.jssn.1674-4861.2024.06.012

A Short-term Traffic Flow Prediction Method Based on Time Series Data Decomposition and Reconstruction

doi: 10.3963/j.jssn.1674-4861.2024.06.012
  • Received Date: 2024-05-24
    Available Online: 2025-03-08
  • In order to extract signal components with rich feature information from short-term traffic flow data and further improve the prediction accuracy, a short-term traffic flow prediction method based on temporal data decomposition reconstruction is constructed by combining the parameter optimization based variational mode decomposition (VMD), recurrence quantification analysis (RQA), and bidirectional gated recurrent unit (BIGRU) models. The osprey cauchy sparrow search algorithm (OCSSA), which integrates the osprey and cauchy variants, is used to determine the number of modal components and the penalty factor of the variational modal decomposition, and to obtain the relatively smooth intrinsic modal components. The decomposed modal components are reconstructed into the deterministic components, fluctuating components, and trend components through the recursive quantitative analysis. Based on this, for each reconstructed component the BIGRU prediction model is constructed, and the predicted values of each reconstructed component are nonlinearly integrated using the BIGRU prediction model to obtain the final prediction results. The measured data of the flow of Shanghai North-South Expressway and California Expressway network are used for validation, The results show that in the NBDX08(1) dataset, the corresponding mean absolute error, root-mean-square error, and mean absolute percentage error are reduced by 29.1%, 24.5%, and 46.1% on average, respectively, compared with the other models; and the errors in the dataset of No. 760101 are reduced by 19.05%, 19.69%, and 16.46% on average. These verify that the proposed method for the decomposition and reconstruction of different components can accurately capture and learn the characteristics of traffic flow components, which further improves the prediction accuracy while controlling the computational complexity of the model.

     

  • loading
  • [1]
    傅成红, 杨书敏, 张阳. 改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息, 2019, 19 (4): 130-134, 148.

    FU C H, YANG S M, ZHANG Y. Promoted short-term traffic flow prediction model basedon deep learning and support vector regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 130-134, 148. (in Chinese)
    [2]
    姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流预测方法综述[J]. 交通运输工程学报, 2023, 23 (3): 44-67.

    YAO J F, HE R, SHI T T, et al. Review onmachine learning based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23 (3): 44-67. (in Chinese)
    [3]
    ASMA B, YOUCEF D, DJENOURI D, et al. A recurrent neural network for urban long-term traffic flow forecasting[J]. Applied Intelligence, 2020, 50 (10): 1-14.
    [4]
    陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20 (4): 49-55.

    CHEN X Q, ZHOU L X, CAO Z. Short-term network widetraffic prediction based on graph convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 49-55. (in Chinese)
    [5]
    WANG R J, SHI W Z, LIU X L, et al. An adaptive cutoff frequency selection approach for fast fourier transform method and its application into short-term traffic flow forecasting[J]. ISPRS International Journal of Geo Information, 2020, 9 (12): 731-731. doi: 10.3390/ijgi9120731
    [6]
    LUO B R, CAO R H, YANG W B, et al. Analysing and predicting the fine-scale distribution of traffic particulate matter in urban non-motorized lanes by using wavelet transform and random forest methods[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37 (7): 2657-2676. doi: 10.1007/s00477-023-02411-6
    [7]
    JAVAD S, NAFISEH S. Neuro-fuzzy modeling of data singular spectrum decomposition and traffic flow prediction[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44 (1): 519-535. doi: 10.1007/s40998-019-00227-1
    [8]
    QUANG D T, Q. H T, VAN M N. An enhanced ensemble based long short-term memory approach for traffic volume prediction[J]. Computers, Materials & Continua, 2024, 78 (3): 3585-3602.
    [9]
    沈富鑫, 邴其春, 张伟健, 等. 基于CEEMD-GRU组合模型的快速路短时交通流预测[J]. 河北科技大学学报, 2021, 42 (5): 454-461.

    SHEN F X, BING Q C, ZHANG W J, et al. Short term traffic flow prediction of express way based on CEEMD-GRU combination model[J]. Journal of Hebei University of Scienceand Technology, 2021, 42 (5): 454-461. (in Chinese)
    [10]
    沈富鑫, 邴其春, 张伟健, 等. 基于CEEMD-AN-ABC-LSTM组合模型的短时交通流预测[J]. 青岛理工大学学报, 2022, 43 (5): 96-103, 119.

    SHEN F X, BING Q C, ZHANG W J, et al. Short term traffic flow prediction based on CEEMDAN-ABC-LSTM combined model[J]. Journal of Qingdao University of Technology, 2022, 43 (5): 96-103, 119. (in Chinese)
    [11]
    邴其春, 张伟健, 沈富鑫, 等. 基于变分模态分解和LSTM的短时交通流预测[J]. 重庆理工大学学报(自然科学), 2023, 37 (5): 169-177.

    BING Q C, ZHANG W J, SHEN F X, et al. Short-term traffic flow prediction based on variational modal decomposition and LSTM[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37 (5): 169-177. (in Chinese)
    [12]
    WEI Y, CHEN M C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks[J]. Transportation Research Part C: Emerging Technologies, 2012, 21 (1): 148-162. doi: 10.1016/j.trc.2011.06.009
    [13]
    CHEN X Q, CHEN H X, YANG Y S, et al. Traffic flow prediction by an ensemble framework with data denoising and deep learning model[J]. Physica A: Statistical Mechanics and its Applications, 2021, 565: 125574. doi: 10.1016/j.physa.2020.125574
    [14]
    HUANG H, MAO J N, LU W K, et al. DE-ASeq2Seq: an attention based sequence to sequence model for short-term metro passenger flow prediction within decomposition ensemble strategy[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103965. doi: 10.1016/j.trc.2022.103965
    [15]
    崔文岳, 谷远利, 赵胜利, 等. 基于有向图卷积与门控循环单元的短时交通流预测方法[J]. 交通信息与安全, 2023, 41 (2): 121-128. doi: 10.3963/j.jssn.1674-4861.2023.02.013

    CUI W Y, GU Y L, ZHAO S L, et al. A method of predicting short-term traffic flows based on a DGC-GRU model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.013
    [16]
    戢晓峰, 孔晓丽, 陈方, 等. 基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型[J]. 交通信息与安全, 2023, 41 (3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018

    JI X F, KONG X L, CHEN F, et al. A forecasting model of short-term traffic flow on expressways during holidays based on ETC data and A-BiLSTM neural network models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.018
    [17]
    STROZZI F, POZZI R. Improving time seriesfeatures identification by means of convolutionnal neural networks and recurrence plot[J]. IFAC PapersOnLine, 2022, 55 (10): 601-606. doi: 10.1016/j.ifacol.2022.09.464
    [18]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science Control Engineering, 2020, 8 (1): 22-34. doi: 10.1080/21642583.2019.1708830
    [19]
    MOHAMMAD D, PAVEL T. Osprey optimiz-ation algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanicaling, 2023 (8): 1126450.
    [20]
    李爱莲, 全凌翔, 崔桂梅, 等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58 (3): 91-99.

    LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sinecosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99. (in Chinese)
    [21]
    聂铃, 张剑, 胡茂政. 基于CEEMDAN分解的短时交通流组合预测[J]. 计算机工程与应用, 2022, 58 (11): 279-286. doi: 10.3778/j.issn.1002-8331.2106-0305

    NIE L, ZHANG J, HU M Z. Short-term traffic flow combination prediction based on CEEMDAN decomposition[J]. Computer Engineering and Applications, 2022, 58(11): 279-286. (in Chinese) doi: 10.3778/j.issn.1002-8331.2106-0305
    [22]
    邴其春, 龚勃文, 杨兆升, 等. 一种组合核相关向量机的短时交通流局域预测方法[J]. 哈尔滨工业大学学报, 2017, 49 (3): 144-149.

    BING Q C, GONG B W, YANG Z S, et al. A short-term traffic flow local prediction method of combined kernel function relevance vector machine[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 144-149. (in Chinese)
    [23]
    李巧茹, 池维源, 陈亮, 等. 基于相空间重构和PSO-GPR的短时交通流预测[J]. 交通信息与安全, 2019, 37 (2): 70-76. doi: 10.3963/j.issn.1674-4861.2019.02.010

    LI Q R, CHI W Y, CHEN L, et al. Short-term traffic flow forecast based on phase space reconstruction and PSO-GPR[J]. Journal of Transport Information and Safety, 2019, 37 (2) : 70-76. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.02.010
    [24]
    许伦辉, 唐德华, 邹娜, 等. 基于非线性时间序列分析的短时交通流特性分析[J]. 重庆交通大学学报(自然科学版), 2010, 29 (1): 110-113.

    XU L H, TANG D H, ZOU N, et al. Analysis on short-term traffic flow characteristics based on nonlinear time series analysis[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010, 29 (1): 110-113. (in Chinese)
    [25]
    XIONG H, SHANG P J, BIAN S H. Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition[J]. Physica A: Statistical Mechanics and its Applications, 2017, 474: 70-84. doi: 10.1016/j.physa.2017.01.060
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views (66) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return