Citation: | BING Qichun, ZHAO Panpan, REN Canzheng, WANG Xueqian, ZHAO Yiming. A Short-term Traffic Flow Prediction Method Based on Time Series Data Decomposition and Reconstruction[J]. Journal of Transport Information and Safety, 2024, 42(6): 112-122. doi: 10.3963/j.jssn.1674-4861.2024.06.012 |
[1] |
傅成红, 杨书敏, 张阳. 改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息, 2019, 19 (4): 130-134, 148.
FU C H, YANG S M, ZHANG Y. Promoted short-term traffic flow prediction model basedon deep learning and support vector regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 130-134, 148. (in Chinese)
|
[2] |
姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流预测方法综述[J]. 交通运输工程学报, 2023, 23 (3): 44-67.
YAO J F, HE R, SHI T T, et al. Review onmachine learning based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23 (3): 44-67. (in Chinese)
|
[3] |
ASMA B, YOUCEF D, DJENOURI D, et al. A recurrent neural network for urban long-term traffic flow forecasting[J]. Applied Intelligence, 2020, 50 (10): 1-14.
|
[4] |
陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20 (4): 49-55.
CHEN X Q, ZHOU L X, CAO Z. Short-term network widetraffic prediction based on graph convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 49-55. (in Chinese)
|
[5] |
WANG R J, SHI W Z, LIU X L, et al. An adaptive cutoff frequency selection approach for fast fourier transform method and its application into short-term traffic flow forecasting[J]. ISPRS International Journal of Geo Information, 2020, 9 (12): 731-731. doi: 10.3390/ijgi9120731
|
[6] |
LUO B R, CAO R H, YANG W B, et al. Analysing and predicting the fine-scale distribution of traffic particulate matter in urban non-motorized lanes by using wavelet transform and random forest methods[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37 (7): 2657-2676. doi: 10.1007/s00477-023-02411-6
|
[7] |
JAVAD S, NAFISEH S. Neuro-fuzzy modeling of data singular spectrum decomposition and traffic flow prediction[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44 (1): 519-535. doi: 10.1007/s40998-019-00227-1
|
[8] |
QUANG D T, Q. H T, VAN M N. An enhanced ensemble based long short-term memory approach for traffic volume prediction[J]. Computers, Materials & Continua, 2024, 78 (3): 3585-3602.
|
[9] |
沈富鑫, 邴其春, 张伟健, 等. 基于CEEMD-GRU组合模型的快速路短时交通流预测[J]. 河北科技大学学报, 2021, 42 (5): 454-461.
SHEN F X, BING Q C, ZHANG W J, et al. Short term traffic flow prediction of express way based on CEEMD-GRU combination model[J]. Journal of Hebei University of Scienceand Technology, 2021, 42 (5): 454-461. (in Chinese)
|
[10] |
沈富鑫, 邴其春, 张伟健, 等. 基于CEEMD-AN-ABC-LSTM组合模型的短时交通流预测[J]. 青岛理工大学学报, 2022, 43 (5): 96-103, 119.
SHEN F X, BING Q C, ZHANG W J, et al. Short term traffic flow prediction based on CEEMDAN-ABC-LSTM combined model[J]. Journal of Qingdao University of Technology, 2022, 43 (5): 96-103, 119. (in Chinese)
|
[11] |
邴其春, 张伟健, 沈富鑫, 等. 基于变分模态分解和LSTM的短时交通流预测[J]. 重庆理工大学学报(自然科学), 2023, 37 (5): 169-177.
BING Q C, ZHANG W J, SHEN F X, et al. Short-term traffic flow prediction based on variational modal decomposition and LSTM[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37 (5): 169-177. (in Chinese)
|
[12] |
WEI Y, CHEN M C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks[J]. Transportation Research Part C: Emerging Technologies, 2012, 21 (1): 148-162. doi: 10.1016/j.trc.2011.06.009
|
[13] |
CHEN X Q, CHEN H X, YANG Y S, et al. Traffic flow prediction by an ensemble framework with data denoising and deep learning model[J]. Physica A: Statistical Mechanics and its Applications, 2021, 565: 125574. doi: 10.1016/j.physa.2020.125574
|
[14] |
HUANG H, MAO J N, LU W K, et al. DE-ASeq2Seq: an attention based sequence to sequence model for short-term metro passenger flow prediction within decomposition ensemble strategy[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103965. doi: 10.1016/j.trc.2022.103965
|
[15] |
崔文岳, 谷远利, 赵胜利, 等. 基于有向图卷积与门控循环单元的短时交通流预测方法[J]. 交通信息与安全, 2023, 41 (2): 121-128. doi: 10.3963/j.jssn.1674-4861.2023.02.013
CUI W Y, GU Y L, ZHAO S L, et al. A method of predicting short-term traffic flows based on a DGC-GRU model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.013
|
[16] |
戢晓峰, 孔晓丽, 陈方, 等. 基于ETC数据和A-BiLSTM神经网络的高速公路节假日短时交通流预测模型[J]. 交通信息与安全, 2023, 41 (3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018
JI X F, KONG X L, CHEN F, et al. A forecasting model of short-term traffic flow on expressways during holidays based on ETC data and A-BiLSTM neural network models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.03.018
|
[17] |
STROZZI F, POZZI R. Improving time seriesfeatures identification by means of convolutionnal neural networks and recurrence plot[J]. IFAC PapersOnLine, 2022, 55 (10): 601-606. doi: 10.1016/j.ifacol.2022.09.464
|
[18] |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science Control Engineering, 2020, 8 (1): 22-34. doi: 10.1080/21642583.2019.1708830
|
[19] |
MOHAMMAD D, PAVEL T. Osprey optimiz-ation algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanicaling, 2023 (8): 1126450.
|
[20] |
李爱莲, 全凌翔, 崔桂梅, 等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58 (3): 91-99.
LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sinecosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99. (in Chinese)
|
[21] |
聂铃, 张剑, 胡茂政. 基于CEEMDAN分解的短时交通流组合预测[J]. 计算机工程与应用, 2022, 58 (11): 279-286. doi: 10.3778/j.issn.1002-8331.2106-0305
NIE L, ZHANG J, HU M Z. Short-term traffic flow combination prediction based on CEEMDAN decomposition[J]. Computer Engineering and Applications, 2022, 58(11): 279-286. (in Chinese) doi: 10.3778/j.issn.1002-8331.2106-0305
|
[22] |
邴其春, 龚勃文, 杨兆升, 等. 一种组合核相关向量机的短时交通流局域预测方法[J]. 哈尔滨工业大学学报, 2017, 49 (3): 144-149.
BING Q C, GONG B W, YANG Z S, et al. A short-term traffic flow local prediction method of combined kernel function relevance vector machine[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 144-149. (in Chinese)
|
[23] |
李巧茹, 池维源, 陈亮, 等. 基于相空间重构和PSO-GPR的短时交通流预测[J]. 交通信息与安全, 2019, 37 (2): 70-76. doi: 10.3963/j.issn.1674-4861.2019.02.010
LI Q R, CHI W Y, CHEN L, et al. Short-term traffic flow forecast based on phase space reconstruction and PSO-GPR[J]. Journal of Transport Information and Safety, 2019, 37 (2) : 70-76. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.02.010
|
[24] |
许伦辉, 唐德华, 邹娜, 等. 基于非线性时间序列分析的短时交通流特性分析[J]. 重庆交通大学学报(自然科学版), 2010, 29 (1): 110-113.
XU L H, TANG D H, ZOU N, et al. Analysis on short-term traffic flow characteristics based on nonlinear time series analysis[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010, 29 (1): 110-113. (in Chinese)
|
[25] |
XIONG H, SHANG P J, BIAN S H. Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition[J]. Physica A: Statistical Mechanics and its Applications, 2017, 474: 70-84. doi: 10.1016/j.physa.2017.01.060
|