Citation: | LIAO Huimin, LUO Jingming, ZHANG Jinghui, LIU Wenping, DONG Wanqing, XIAO Hui, HUANG Jian. A Recognition Model for Passenger Boarding and Alighting Action Based on Improved Temporal Pyramid Network[J]. Journal of Transport Information and Safety, 2024, 42(6): 95-102. doi: 10.3963/j.jssn.1674-4861.2024.06.010 |
[1] |
寇敏, 张萌萌, 赵军学, 等. 道路交通安全风险辨识与分析方法综述[J]. 交通信息与安全, 2022, 40(6): 22-32. doi: 10.3963/j.jssn.1674-4861.2022.06.003
KOU M, ZHANG M M, ZHAO J X, et al. A Review of identification and analysis methods for road safety risk[J]. Journal of Transport Information and Safety, 2022, 40(6): 22-32. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.003
|
[2] |
张博, 庞基敏, 章文嵩, 等. 互联网大数据技术在智慧交通发展中的应用[J]. 科技导报, 2020, 38(9): 47-54.
ZHANG B, PANG J M, ZHANG W S, et al. Application of internet big data technology in the development of smart transportation[J]. Science & Technology Review, 2020, 38(9): 47-54. (in Chinese)
|
[3] |
李熙莹, 陆强, 张晓春, 等. 基于人车交互行为模型的上下客行为识别[J]. 中国公路学报, 2021, 34(7): 152-163. doi: 10.3969/j.issn.1001-7372.2021.07.013
LI X Y, LU Q, ZHANG X C, et al. Boarding and alighting behavior recognition based on human-vehicle interaction behavior model[J]. China Journal of Highway and Transport, 2021, 34(7): 152-163. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.07.013
|
[4] |
王隽. 基于机器视觉的高速公路服务区违法上下客识别应用研究[J]. 时代汽车, 2022(14): 196-198 doi: 10.3969/j.issn.1672-9668.2022.14.069
WANG J. Application research of illegal boarding and alighting recognition in expressway service area based on machine Vision[J]. Auto Time, 2022(14): 196-198. (in Chinese) doi: 10.3969/j.issn.1672-9668.2022.14.069
|
[5] |
贺艺斌, 田圣哲, 兰贵龙. 基于改进Faster-RCNN算法的行人检测[J]. 汽车实用技术, 2022, 47 (05): 34-37.
HE Y B, TIAN S Z, LAN G L. Pedestrian detection based on improved faster-RCNN algorithm[J]. Automobile Applied Technology, 2022, 47(05): 34-37. (in Chinese)
|
[6] |
张若杨, 贾克斌, 刘鹏宇. 视频监控中私自揽客违法行为检测[J]. 计算机应用与软件, 2019, 36 (3): 168-173, 209. doi: 10.3969/j.issn.1000-386x.2019.03.031
ZHANG R Y, JIA K B, LIU P Y. Illegal behavior detection of carrying passengers privately in video surveillance[J]. Computer Applications and Software, 2019, 36(03): 168-173, 209. (in Chinese) doi: 10.3969/j.issn.1000-386x.2019.03.031
|
[7] |
房春瑶, 贾克斌, 刘鹏宇. 基于监控视频的出租车违规私揽行为识别[J]. 计算机仿真, 2020, 37 (5): 326-331. doi: 10.3969/j.issn.1006-9348.2020.05.066
FANG C Y, JIA K B, LIU P Y. Identification of taxi violation behavior based on surveillance video[J]. Computer Simulation, 2020, 37 (5): 326-331. (in Chinese) doi: 10.3969/j.issn.1006-9348.2020.05.066
|
[8] |
JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 221-231.
|
[9] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. International Conference on Computer Vision, Boston, USA: IEEE, 2015.
|
[10] |
CARREIRA J, ZISSERMAN A. QUO VADIS, Action recognition? a new model and the kinetics dataset[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA: IEEE/CVF, 2017.
|
[11] |
TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE/CVF, 2018.
|
[12] |
HUANG D A, RAMANATHAN V, MAHAJAN D, et al. What makes a video a video: analyzing temporal information in video understanding models and datasets[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE/CVF, 2018.
|
[13] |
FEICHTENHOFER C, FAN H, MALIK J, et al. Slowfast networks for video recognition[C]. International Conference on Computer Vision, Seoul, Korea (South): IEEE/CVF, 2019.
|
[14] |
YANG C, XU Y, SHI J, et al. Temporal pyramid network for action recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA: IEEE, 2020.
|
[15] |
HAN K, XIAO A, WU E, et al. Transformer in transformer[J]. Advances in neural information processing systems, 2021, 34: 15908-15919.
|
[16] |
HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine intelligence, 2022, 45(1): 87-110.
|
[17] |
BERTASIAS G, WANG H, TORRESANI L. Is space-time attention all you need for video understanding?[C]. International Conference on Machine Learning, Vienna, Austria: IMLS, 2021.
|
[18] |
杨世强, 罗晓宇, 乔丹, 等. 基于滑动窗口和动态规划的连续动作分割与识别[J]. 计算机应用, 2019, 39(2): 348-353.
YANG S Q, LUO X Y, QIAO D et al. Continuous action segmentation and recognition based on sliding window and dynamic programming[J]. Journal of Computer Applications, 2019, 39(2): 348-353. (in Chinese)
|
[19] |
HARA K, KATAOKA H, SATOH Y. Learning spatio-temporal features with 3D residual networks for action recognition[C]. International Conference on Computer Vision Workshops, Lido Island, Venice, Italy: IEEE, 2017.
|
[20] |
ZHANGE D, ZHANG H, TANG J, et al. Feature pyramid transformer[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK: European Computer Vision Association, 2020.
|