Volume 42 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
CHEN Qianqian, HU Fengling, WEN Yuanqiao. A Recognition Method for Ship Motion Pattern Based on Nine-axis IMU[J]. Journal of Transport Information and Safety, 2024, 42(6): 74-83. doi: 10.3963/j.jssn.1674-4861.2024.06.008
Citation: CHEN Qianqian, HU Fengling, WEN Yuanqiao. A Recognition Method for Ship Motion Pattern Based on Nine-axis IMU[J]. Journal of Transport Information and Safety, 2024, 42(6): 74-83. doi: 10.3963/j.jssn.1674-4861.2024.06.008

A Recognition Method for Ship Motion Pattern Based on Nine-axis IMU

doi: 10.3963/j.jssn.1674-4861.2024.06.008
  • Received Date: 2024-05-03
    Available Online: 2025-03-08
  • Motion pattern recognition is an important issue for achieving intelligent navigation of ships. To address the limitations of existing methods, including slow data update rates and strong environmental constraints, a ship motion pattern recognition method based on nine-axisinertial measurement unit (IMU) is proposed. The shortcomings of current ship motion sensing technologies are analyzed, and a nine-axis IMU consisting of an accelerometer, gyroscope, and magnetometer is utilized to identify ship motion parameters. To process long-duration continuous signals encompassing multiple motion patterns, a data segmentation algorithm based on hidden Markov model is developed. The expectation maximization algorithm is employed to estimate model parameters, enabling signal segmentation according to motion patterns and the extraction of single steady-state motion signals. The time-domain features that characterize ship motion patterns are then extracted from the segmented signals. To improve recognition accuracy, a support vector machine (SVM) algorithm based on a binomial tree structure is designed. The binary tree structure is constructed using the maximum cut problem, with SVM classifiers employed at decision nodes. The particle swarm algorithm is applied to optimize the model parameters. Experiments conducted using ship motion data collected from real ships validate the proposed method. Results show that the proposed recognition algorithm requires training only five SVM sub-classifiers for the recognition of six ship motion patterns, achieving an average recognition accuracy of 96.498%. Compared to traditional one-to-one and one-to-rest SVM multi-classification methods, the proposed method improves average recognition accuracy by 13.835% and 21.305%, respectively, while requiring fewer sub-classifiers for training. These findings demonstrate the superiority and efficiency of the proposed approach.

     

  • loading
  • [1]
    CHEN Z, XUE J, WU C, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161: 69-76. doi: 10.1016/j.oceaneng.2018.04.072
    [2]
    曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39 (1): 212-222.

    ZENG Y, LIU C L, TANG T N. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computers, 2016, 39 (1): 212-222. (in Chinese)
    [3]
    马文耀, 吴兆麟, 李伟峰, 等. AIS数据中单船操纵模式辨识[J]. 中国航海, 2017, 40 (4): 51-55, 80.

    MA W Y, WU Z L, LI W F, et al. Recognition of individual ship maneuvering pattern from AIS data[J]. Navifation of China, 40 (4): 51-55, 88. (in Chinese)
    [4]
    PATROUMPAS K, ALEVIZOS E, ARTIKIS A, et al. Online event recognition from moving vessel trajectories[J]. Geoinformatica, 2017, 21 (2): 1-39. doi: 10.1007/s10707-016-0266-x
    [5]
    陈影玉, 杨神化, 索永峰. 船舶行为异常检测研究进展[J]. 交通信息与安全, 2020, 38(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001

    CHEN Y Y, YANG S H, SUO Y F. Research progress of ship behavior anomaly detection[J]. Journal of Transport Information and Safety, 2020, 38 (5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001
    [6]
    陈影玉, 杨神化, 索永峰. 船舶行为异常检测研究进展[J]. 交通信息与安全, 2020, 38 (5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001

    CHEN Y Y, YANG S H, SUO Y F. Research progress of ship behavior anomaly detection. [J]. Journal of Transport Information and Safety, 2020, 38 (5): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.05.001
    [7]
    马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17 (5): 149-158.

    MA W Y, WU Z L LI W F. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (5): 149-158. (in Chinese)
    [8]
    文元桥, 宋荣鑫, 黄亮, 等. 船舶行为的语义建模与表达[J]. 哈尔滨工业大学学报, 2021, 53 (8): 109-115.

    WEN Y Q, SONG R X, HUANG L, et al. Semantic modeling and expression for ship behaviors. [J]. Journal of Haebin Institute of Technology, 2021, 53 (8): 109-115. (in Chinese)
    [9]
    黄亮, 刘益, 文元桥, 等. 内河渡船异常行为识别[J]. 大连海事大学学报, 2017, 43 (1): 8-13.

    HUANG L, LIU Y, WEN Y Q, et al. Abnormal behavior recognition of inland river ferryboat[J]. Journal of Dalian Maritime University, 2017, 43 (1): 8-13. (in Chinese)
    [10]
    YANG D, WU L, WANG S, et al. How big data enriches maritime research-a critical review of automatic identification system (AIS) data applications[J]. Transport Reviews, 2019, 39 (6): 755-773. doi: 10.1080/01441647.2019.1649315
    [11]
    汪荣琪. 内河航道船舶检测与跟踪算法研究[D]. 武汉: 武汉理工大学, 2017

    WANG R Q, Research on detection and tracking algorithm for ship in inland waterway[D]. WuHan: Wuhan University of Technology, 2017. (in Chinese)
    [12]
    刘俊. 基于红外图像的内河运动船舶目标检测和跟踪技术研究[D]. 重庆: 重庆大学, 2008.

    LIU J. Moving ships detection and tracking from infrared image in inland waterway[D] ChongQing: Chongqing University, 2008. (in Chinese)
    [13]
    CAI Z, YU L, FAN Q, et al. Development of a vision-based ship behavior characteristics extraction approach and comparison with K-means clustering[C]. ISOPE International Ocean and Polar Engineering Conference, Shanghai: ISOPE, 2022.
    [14]
    GAO L, BOURKE A, NELSON J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems[J]. Medical Engineering & Physics, 2014, 36 (6): 779-785. http://www.xueshufan.com/publication/2013582641
    [15]
    孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46 (7): 1267-1274.

    MENG G L, ZHANG H M, PIAO H Y, et al. Recognition of fighter maneuver in automatic flight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (7): 1267-1274. (in Chinese)
    [16]
    徐西蒙, 杨任农, 于洋, 等. 基于运动分解和H-SVM的空战目标机动识别[J]. 控制与决策, 2020, 35 (5): 1265-1272.

    XU X M, YANG R N, YU Y, et al. Targetmaneuver recognitioninair combat based on motion decompositionand H-SVM[J]. Control and Decision, 2020, 35 (5): 1265-1272. (in Chinese)
    [17]
    HE Z, JIN L. Activity recognition from acceleration data using AR model representation and SVM[C]. 2008 International Conference on Machine Learning and Cybernetics, Kunming: IEEE, 2008.
    [18]
    GUERBAI Y, CHIBANI Y, HADJADJI B. The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters[J]. Pattern Recognition, 2015, 48 (1): 103-113. http://www.onacademic.com/detail/journal_1000036617188210_317c.html
    [19]
    白金辉. 面向能量回收的MIMU人体运动检测识别方法研究及系统实现[D]. 南京: 东南大学, 2015.

    BAI J H. Research and implementation of human motion detection and recognition system with MIMU for energy harvesting[D]. NanJing: Southeast University, 2015. (in Chinese)
    [20]
    MORILLO L M S, GONZALEZ-ABRIL L, RAMIREZ J A O, et al. Low energy physical activity recognition system on smartphones[J]. Sensors, 2015, 15 (3): 5163-5196. http://www.xueshufan.com/publication/2072737142
    [21]
    FAN X, ZHAO S, SUN J. Nonparametric test for stratum effects in the cox model with interval-censored data[J]. Communicationsin Statistics-Theory and Methods, 2019, 48 (2): 300-310. http://www.xueshufan.com/publication/2774284810
    [22]
    CHEN J Y, XIONG H, ZHENG H. Parameters optimization for SVM based on particle swarm algorithm[J]. Computer Science, 2018, 45 (6): 197-203. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJA201806035.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views (37) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return