Citation: | XIE Ting, LIU Xingliang, LIU Tangzhi, XU Jin. A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model[J]. Journal of Transport Information and Safety, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003 |
[1] |
LI X, ZHUGE C, YU B. Analysis on the impact of ilegal driver behaviors on road traffic accidents case study on China[C]. The 11th International Conference on Intelligent Human-Machine Systems and Cybermetics, Hangzhou: IEEE, 2019.
|
[2] |
胡江碧, 何禄诚, 王荣华. 高速公路互通立交安全性评价研究综述[J]. 中国公路学报, 2020, 33(7): 17-28. doi: 10.3969/j.issn.1001-7372.2020.07.002
HU J B, HE L C, WANG R H. Review of safety evaluation of freeway interchange[J]. China Journal of Highway and Transport, 2020, 33(7): 17-28. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.07.002
|
[3] |
CHEN S, XUE Q, ZHAO X, et al. Risky driving behavior recognition based on vehicle trajectory[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12373. doi: 10.3390/ijerph182312373
|
[4] |
XIAN H, HOU Y, WANG Y, et al. Influence of risky driving behavior and road section type on urban expressway driving safety[J]. Sustainability, 2023, 15(1): 398.
|
[5] |
唐克双, 谈超鹏, 周楠. 基于轨迹数据的交叉口相位切换期间危险驾驶行为实证分析[J]. 中国公路学报, 2018, 31(4): 88-97. doi: 10.3969/j.issn.1001-7372.2018.04.011
TANG K S, TAN C P, ZHOU N. Empirical analysis of risky driving behavior during the phase transition intervals at signalized intersections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2018, 31(4): 88-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.04.011
|
[6] |
CHEN T, SHI X, WONG Y D. Key feature selection and risk prediction for lane-changing behaviors based on vehicles'trajectory data[J]. Accident Analysis & Prevention, 2019, 129: 156-169.
|
[7] |
SHI X, WONG Y D, LI M, et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention, 2019, 129: 170-179.
|
[8] |
薛清文, 蒋愚明, 陆键. 基于轨迹数据的危险驾驶行为识别方法[J]. 中国公路学报, 2020, 33(6): 84-94. doi: 10.3969/j.issn.1001-7372.2020.06.008
XUE Q W, JIANG Y M, LU J. Risky driving behavior recognition based on trajectory data[J]. China Journal of Highway and Transport, 2020, 33(6): 84-94. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.06.008
|
[9] |
张方方, 王长君, 王俊骅. 城市快速路匝道合流区车辆交互行为模式[J]. 中国公路学报, 2022, 35(9): 66-79. doi: 10.3969/j.issn.1001-7372.2022.09.006
ZHANG F F, WANG C J, WANG J H. Vehicle interaction patterns at on-ramp merging area of urban expressway[J]. China Journal of Highway and Transport, 2022, 35(9): 66-79. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.09.006
|
[10] |
马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型[J]. 交通运输系统工程与信息, 2018, 18 (2): 142-148.
MA Y L, QI S M, WU H T, et al. Traffic conflict identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2), 142-148. (in Chinese)
|
[11] |
温惠英, 李秋灵, 赵胜. 快速路合流区大型车换道时空特征及风险研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 11-21.
WEN H Y, LI Q L, ZHAO S. Research on spatiotemporal characteristic and risk of lane-changing behaviors of large vehicles in expressway merging area[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 11-21. (in Chinese)
|
[12] |
GU X, CAI Q, LEE J, et al. Proactive crash risk prediction modeling for merging assistance system at interchange merging areas[J]. Traffic Injury Prevention, 2020, 21(3): 234-240. doi: 10.1080/15389588.2020.1734581
|
[13] |
冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
|
[14] |
刘唐志, 毕辉云, 杨卓思, 等. 基于操纵量指标的合流区危险驾驶行为谱研究[J]. 交通运输系统工程与信息, 2023, 23(2): 242-251.
LIU T Z, BI H Y, YANG Z S, et al. Research on dangerous driving behavior spectrum in merging area based on maneuver indicators[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 242-251. (in Chinese)
|
[15] |
陆键, 王可, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为实时辨识方法[J]. 交通运输工程学报, 2020, 20(6): 227-235.
LU J, WANG K, JIANG Y M. Real-time identification method of abnormal road driving behavior based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 227-235. (in Chinese)
|
[16] |
王可, 陆键, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J]. 交通运输工程学报, 2020, 20(6): 236-249.
WANG K, LU J, JIANG Y M. Abnormal road driving behavior spectrum establishment and characteristic value calculation method based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 236-249. (in Chinese)
|
[17] |
万豫, 黄妙华, 王思楚. 基于改进DBSCAN算法的驾驶风格识别方法研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(10): 1313-1320. doi: 10.3969/j.issn.1003-5060.2020.10.003
WAN Y, HUANG M H, WANG S C. Research on a driving style recognition method based on improved DBSCAN algorithm[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(10): 1313-1320. (in Chinese) doi: 10.3969/j.issn.1003-5060.2020.10.003
|
[18] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. doi: 10.1613/jair.953
|
[19] |
HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. The 2008 International Joint Conference on Neural Networks, Piscataway: IEEE, 2008.
|
[20] |
刘定祥, 乔少杰, 张永清, 等. 不平衡分类的数据采样方法综述[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 102-112.
LIU D X, QIAO S J, ZHANG Y Q, et al. A survey on data sampling methods in imbalance classification[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(7): 102-112. (in Chinese)
|
[21] |
曹莹, 苗启广, 刘家辰, 等. AdaBoost算法研究进展与展望[J]. 自动化学报, 2013, 39(6): 745-758.
CAO Y, MIAO Q G, LIU J Z, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758. (in Chinese)
|
[22] |
CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]. The 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016.
|
[23] |
KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30(1): 3146-3154.
|