Volume 42 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
XIE Ting, LIU Xingliang, LIU Tangzhi, XU Jin. A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model[J]. Journal of Transport Information and Safety, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003
Citation: XIE Ting, LIU Xingliang, LIU Tangzhi, XU Jin. A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model[J]. Journal of Transport Information and Safety, 2024, 42(6): 23-30. doi: 10.3963/j.jssn.1674-4861.2024.06.003

A Recognition Method for Risky Driving Behaviors of Urban Expressway Merging Area Based on DE-EL Model

doi: 10.3963/j.jssn.1674-4861.2024.06.003
  • Received Date: 2024-06-27
    Available Online: 2025-03-08
  • A method for recognizing risky driving behaviors using vehicle trajectory data is established to improve safety and prevent traffic accident in urban expressway merging areas. The characteristic thresholds of four types of risky driving behaviors are firstly determined using a risk assessment approach and the interquartile range method. Subsequently, drivers'risk scores (G) are calculated using the established spectrum of risky driving behaviors, enabling the classification of drivers as safe or risky. To balance the datasets, the driving risk samples are augmented by data equalization (DE) algorithms (ROS, ADASYN, and SMOTE). Combining ensemble learning (EL) algorithms (XGBoost, LGBM and AdaBoost) to build various DE-EL models for risky driving behaviors recognition. The Spearman correlation coefficient is used to optimize the input feature parameters, which include five categories: vehicle speed, acceleration and deceleration, lateral operation, position characteristics and time occupation ratio. The optimal recognition model is is determined based on precision rate, recall rate, F1 -score and AUC value. The results show that the level of driver risk is most strongly correlated with driver lateral operation and less so with vehicle speed in merging areas. The unbalanced trajectory dataset makes it difficult to effectively identify risky driving behaviors by the EL algorithm, while the DE algorithm can improve the properties of the classification algorithm. After optimizing the input feature parameters, the performance of the DE-EL recognition model improves, and the SMOTE-LGBM model is the best one with precision rate of 93.4%, recall rate of 92.1%, F1 -score of 0.927, and AUC value of 0.933. This model is applicable for recognizing, warning, intervening in risky driving behaviors in merging areas.

     

  • loading
  • [1]
    LI X, ZHUGE C, YU B. Analysis on the impact of ilegal driver behaviors on road traffic accidents case study on China[C]. The 11th International Conference on Intelligent Human-Machine Systems and Cybermetics, Hangzhou: IEEE, 2019.
    [2]
    胡江碧, 何禄诚, 王荣华. 高速公路互通立交安全性评价研究综述[J]. 中国公路学报, 2020, 33(7): 17-28. doi: 10.3969/j.issn.1001-7372.2020.07.002

    HU J B, HE L C, WANG R H. Review of safety evaluation of freeway interchange[J]. China Journal of Highway and Transport, 2020, 33(7): 17-28. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.07.002
    [3]
    CHEN S, XUE Q, ZHAO X, et al. Risky driving behavior recognition based on vehicle trajectory[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12373. doi: 10.3390/ijerph182312373
    [4]
    XIAN H, HOU Y, WANG Y, et al. Influence of risky driving behavior and road section type on urban expressway driving safety[J]. Sustainability, 2023, 15(1): 398.
    [5]
    唐克双, 谈超鹏, 周楠. 基于轨迹数据的交叉口相位切换期间危险驾驶行为实证分析[J]. 中国公路学报, 2018, 31(4): 88-97. doi: 10.3969/j.issn.1001-7372.2018.04.011

    TANG K S, TAN C P, ZHOU N. Empirical analysis of risky driving behavior during the phase transition intervals at signalized intersections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2018, 31(4): 88-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.04.011
    [6]
    CHEN T, SHI X, WONG Y D. Key feature selection and risk prediction for lane-changing behaviors based on vehicles'trajectory data[J]. Accident Analysis & Prevention, 2019, 129: 156-169.
    [7]
    SHI X, WONG Y D, LI M, et al. A feature learning approach based on XGBoost for driving assessment and risk prediction[J]. Accident Analysis & Prevention, 2019, 129: 170-179.
    [8]
    薛清文, 蒋愚明, 陆键. 基于轨迹数据的危险驾驶行为识别方法[J]. 中国公路学报, 2020, 33(6): 84-94. doi: 10.3969/j.issn.1001-7372.2020.06.008

    XUE Q W, JIANG Y M, LU J. Risky driving behavior recognition based on trajectory data[J]. China Journal of Highway and Transport, 2020, 33(6): 84-94. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.06.008
    [9]
    张方方, 王长君, 王俊骅. 城市快速路匝道合流区车辆交互行为模式[J]. 中国公路学报, 2022, 35(9): 66-79. doi: 10.3969/j.issn.1001-7372.2022.09.006

    ZHANG F F, WANG C J, WANG J H. Vehicle interaction patterns at on-ramp merging area of urban expressway[J]. China Journal of Highway and Transport, 2022, 35(9): 66-79. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.09.006
    [10]
    马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型[J]. 交通运输系统工程与信息, 2018, 18 (2): 142-148.

    MA Y L, QI S M, WU H T, et al. Traffic conflict identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2), 142-148. (in Chinese)
    [11]
    温惠英, 李秋灵, 赵胜. 快速路合流区大型车换道时空特征及风险研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 11-21.

    WEN H Y, LI Q L, ZHAO S. Research on spatiotemporal characteristic and risk of lane-changing behaviors of large vehicles in expressway merging area[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 11-21. (in Chinese)
    [12]
    GU X, CAI Q, LEE J, et al. Proactive crash risk prediction modeling for merging assistance system at interchange merging areas[J]. Traffic Injury Prevention, 2020, 21(3): 234-240. doi: 10.1080/15389588.2020.1734581
    [13]
    冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008

    FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
    [14]
    刘唐志, 毕辉云, 杨卓思, 等. 基于操纵量指标的合流区危险驾驶行为谱研究[J]. 交通运输系统工程与信息, 2023, 23(2): 242-251.

    LIU T Z, BI H Y, YANG Z S, et al. Research on dangerous driving behavior spectrum in merging area based on maneuver indicators[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 242-251. (in Chinese)
    [15]
    陆键, 王可, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为实时辨识方法[J]. 交通运输工程学报, 2020, 20(6): 227-235.

    LU J, WANG K, JIANG Y M. Real-time identification method of abnormal road driving behavior based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 227-235. (in Chinese)
    [16]
    王可, 陆键, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J]. 交通运输工程学报, 2020, 20(6): 236-249.

    WANG K, LU J, JIANG Y M. Abnormal road driving behavior spectrum establishment and characteristic value calculation method based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 236-249. (in Chinese)
    [17]
    万豫, 黄妙华, 王思楚. 基于改进DBSCAN算法的驾驶风格识别方法研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(10): 1313-1320. doi: 10.3969/j.issn.1003-5060.2020.10.003

    WAN Y, HUANG M H, WANG S C. Research on a driving style recognition method based on improved DBSCAN algorithm[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(10): 1313-1320. (in Chinese) doi: 10.3969/j.issn.1003-5060.2020.10.003
    [18]
    CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. doi: 10.1613/jair.953
    [19]
    HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. The 2008 International Joint Conference on Neural Networks, Piscataway: IEEE, 2008.
    [20]
    刘定祥, 乔少杰, 张永清, 等. 不平衡分类的数据采样方法综述[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 102-112.

    LIU D X, QIAO S J, ZHANG Y Q, et al. A survey on data sampling methods in imbalance classification[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(7): 102-112. (in Chinese)
    [21]
    曹莹, 苗启广, 刘家辰, 等. AdaBoost算法研究进展与展望[J]. 自动化学报, 2013, 39(6): 745-758.

    CAO Y, MIAO Q G, LIU J Z, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758. (in Chinese)
    [22]
    CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]. The 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016.
    [23]
    KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30(1): 3146-3154.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (107) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return