Citation: | ZHANG Di, LIU An, LIU Yang, TIAN Huibin. Research Status and Hotspot Analysis of Dangerous Goods Transportation by Waterway in China[J]. Journal of Transport Information and Safety, 2024, 42(6): 14-22. doi: 10.3963/j.jssn.1674-4861.2024.06.002 |
[1] |
恒州博智国际信息咨询有限公司. 2024—2030全球及中国危险品运输行业研究及十五五规划分析报告[R]. 北京: 恒州博智国际信息咨询有限公司, 2024.
QY Research. 2024—2030 global and China transportation of dangerous goods(TDG)industry research and 15th five year plan analysis report[R]. Beijing: QY Research, 2024. (in Chinese)
|
[2] |
严新平, 韩亚, 吴兵, 等. 水路交通系统的发展现状与未来展望[J]. 中国航海, 2024, 47(2): 145-152. doi: 10.3969/j.issn.1000-4653.2024.02.019
YAN X P, HAN Y, WU B, et al. Current development and future prospects of waterborne transportation system[J]. Navigation of China, 2024, 47(2): 145-152. (in Chinese) doi: 10.3969/j.issn.1000-4653.2024.02.019
|
[3] |
郑云亮, 赵杰超, 王吉武, 等. 水上危化品运输事故分析及应急处置能力提升研究[J]. 舰船科学技术, 2023, 45(9): 69-74. doi: 10.3404/j.issn.1672-7649.2023.09.015
ZHENG Y L, ZHAO J C, WANG J W, et al. Analysis of maritime transport accidents of hazardous chemicals and research on the improvement of emergency response capabilities[J]. Ship Science and Technology, 2023, 45(9): 69-74. (in Chinese) doi: 10.3404/j.issn.1672-7649.2023.09.015
|
[4] |
KIM S J, LEE S J, LEE H Y, et al. Development of unmanned air and water vehicle disaster-management payload and monitoring systems for marine chemical accident response[J]. Journal of Environmental Analysis, Health and Toxicology, 2020, 23(1): 37-46. doi: 10.36278/jeaht.23.1.37
|
[5] |
吴建华, 彭虎, 王辰, 等. 基于AIS通信量的水上交通事故检测方法[J]. 交通信息与安全, 2023, 41(5): 83-94. doi: 10.3963/j.jssn.1674-4861.2023.05.009
WU J H, PENG H, WANG C, et al. A detection method for maritime traffic accidents based on AIS communication volume[J]. Journal of Transport Information and Safety, 2023, 41(5): 83-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.009
|
[6] |
孙权, 吴赞, 黄国富, 等. 满足第Ⅲ阶段EEDI指标的3万吨化学品绿色船型开发[J]. 中国造船, 2018, 59(2): 42-50. doi: 10.3969/j.issn.1000-4882.2018.02.005
SUN Q, WU Z, HUANG G F, et al. Development of 30 000 ton chemical green ship type meeting EEDI index in phase Ⅲ[J]. Shipbuilding of China, 2018, 59(2): 42-50. (in Chinese) doi: 10.3969/j.issn.1000-4882.2018.02.005
|
[7] |
彭贵胜, 高阳, 王文华, 等. Aframax油船自航性能的数值和试验研究[J]. 船舶力学, 2020, 24(6): 754-763. doi: 10.3969/j.issn.1007-7294.2020.06.006
PENG G S, GAO Y, WANG W H, et al. Numerical and experimental study on self-propulsion performance of Aframax tanker[J]. Journal of Ship Mechanics. 2020, 24(6): 754-763. (in Chinese) doi: 10.3969/j.issn.1007-7294.2020.06.006
|
[8] |
刘英良, 蒋武杰, 刘嵩. 基于CFD的超大型液化气船型线优化[J]. 船海工程, 2018, 47(1): 1-5. doi: 10.3963/j.issn.1671-7953.2018.01.001
LIU Y L, JIANG W J, LIU S. Optimization of super large liquefied gas ship based on CFD[J]. Ship & Ocean Engineering, 2018, 47(1): 1-5. (in Chinese) doi: 10.3963/j.issn.1671-7953.2018.01.001
|
[9] |
冯国庆, 常琦, 王元, 等. 复杂约束条件下大型油船中剖面结构优化[J]. 华中科技大学学报(自然科学版), 2019, 47 (10): 75-81.
FENG G Q, CHANG Q, WANG Y, et al. Mid-section structure optimization for large oil tankers under complex constraints[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2019, 47(10): 75-81. (in Chinese)
|
[10] |
丁悦, 郭世玺. 极地破冰型阿芙拉油船的线型设计[J]. 船海工程, 2019, 48(2): 122-126. doi: 10.3963/j.issn.1671-7953.2019.02.032
DING Y, GUO S X. Linear design of polar ice breaking Aframax[J]. Ship & Ocean Engineering, 2019, 48(2): 122-126. doi: 10.3963/j.issn.1671-7953.2019.02.032
|
[11] |
杨朕, 张利军, 曹凯, 等. 穿梭油船波浪载荷直接计算分析[J]. 中国航海, 2019, 42(1): 34-37, 46. doi: 10.3969/j.issn.1000-4653.2019.01.007
YANG Z, ZHANG L J, CAO K, et al. Direct calculation and analysis of wave load on shuttle tanker[J]. Navigation of China, 2019, 42(1): 34-37, 46. (in Chinese) doi: 10.3969/j.issn.1000-4653.2019.01.007
|
[12] |
杨鹏, 顾学康, 丁军, 等. 大型油船和散货船波激振动及其对结构疲劳寿命的影响[J]. 船舶力学, 2016, 20(10): 1320-1329. doi: 10.3969/j.issn.1007-7294.2016.10.012
YANG P, GU X K, DING J, et al. Study on springing of large oil tanker and bulk carrier and the influence to fatigue[J]. Journal of Ship Mechanics, 2016, 20 (10): 1320-1329. (in Chinese) doi: 10.3969/j.issn.1007-7294.2016.10.012
|
[13] |
王元, 王德禹. 考虑晃荡效应的独立B型LNG液舱结构多目标优化[J]. 海洋工程, 2016, 34(2): 88-94.
WANG Y, WANG D Y. Structural multi-objective optimization of SPB LNG tanks under sloshing pressure[J]. The Ocean Engineering, 2016, 34(2): 88-94. (in Chinese)
|
[14] |
张吉萍, 邵珠峰, 杨阳, 等. 考虑液货晃荡的油船运动与结构响应研究[J]. 中国造船, 2017, 58(4): 83-90. doi: 10.3969/j.issn.1000-4882.2017.04.010
ZHANG J P, SAO Z F, YANG Y, et al. Research on motion and structural response of oil tanker considering sloshing of liquid cargo[J]. Shipbuilding of China, 2017, 58(4): 83-90. (in Chinese) doi: 10.3969/j.issn.1000-4882.2017.04.010
|
[15] |
唐亮, 李玉星, 臧垒垒, 等. 不同LNG液舱对晃荡敏感性的数值模拟[J]. 油气储运, 2017, 36(7): 849-854, 860.
TANG L, LI Y X, ZANG L L, et al. Numerical simulation on the sensitivity of LNG liquid tank to sloshing[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 849-854, 860. (in Chinese)
|
[16] |
张明娟, 刘俊, 薛鸿祥, 等. 独立B型LNG船液舱晃荡强度分析方法[J]. 舰船科学技术, 2017, 39(17): 59-63, 73.
ZHANG M J, LIU J, XUE H X, et al. Strength analysis measures of LNG ship with independent type B tanks under sloshing load[J]. Ship Science and Technology, 2017, 39(17): 59-63, 73. (in Chinese)
|
[17] |
焦玲玲, 赵路, 杨会, 等. 晃荡对CSR油船设计的影响[J]. 船海工程, 2021, 50(2): 91-93, 97.
JIAO L L, ZHAO L, YANG H, et al. Influence of sloshing on CSR tanker design[J]. Ship & Ocean Engineering, 2021, 50(2): 91-93, 97. (in Chinese)
|
[18] |
ZHAO M M, JIAO J L. Smoothed-Particle Hydrodynamics simulation of ship motion and tank sloshing under the effect of regular waves[J]. Fluid Dynamics & Materials Processing, 2024, 20(5): 1045-1061.
|
[19] |
官文锋, 田宇忠, 徐建勇. 内河船舶载运散装植物油液货舱位置分析[J]. 船海工程, 2017, 46(4): 82-85.
GUAN W F, TIAN Y Z, XU J Y. Analysis on the position of the cargo tank of inland river ships carrying bulk vegetable oil[J]. Ship & Ocean Engineering, 2017, 46(4): 82-85. (in Chinese)
|
[20] |
荆明阳, 张佳宁, 张雷, 等. 基于风险最小化思想的油船分舱设计研究[J]. 中国造船, 2016, 57(1): 186-192. doi: 10.3969/j.issn.1000-4882.2016.01.020
JING M Y, ZHANG J N, ZHANG L, et al. Research on subdivision design of oil tanker based on risk minimization[J]. Shipbuilding of China, 2016, 57(1): 186-192. (in Chinese) doi: 10.3969/j.issn.1000-4882.2016.01.020
|
[21] |
王高阳, 夏利娟. 基于组合算法的VLCC货舱区综合分舱优化[J]. 中国造船, 2020, 61(4): 198-208.
WANG G Y, XIA L J. Integrated subdivision optimization of VLCC cargo area based on combinatorial algorithm[J]. Shipbuilding of China, 2020, 61(4): 198-208. (in Chinese)
|
[22] |
姚志义, 郑坤, 时光志, 等. 中小型LNG船C型舱的多目标优化设计方法[J]. 船海工程, 2021, 50(3): 45-48.
YAO Z Y, ZHENG K, SHI G Z, et al. Multi-objective optimization design for independent type C cargo tanks of small and medium-scaled LNG carriers[J]. Ship & Ocean Engineering, 2021, 50(3): 45-48. (in Chinese)
|
[23] |
苏绍娟, 王国回, 张祥. V型无压载水油船货舱中横剖面拓扑优化[J]. 船舶工程, 2022, 44(4): 58-63.
SU S J, WANG G H, ZHANG X. Topology optimization of midship section of cargo hold of V-type non-ballast water tanker[J]. Ship Engineering, 2022, 44(4): 58-63. (in Chinese)
|
[24] |
季东. 大型油船货舱惰气及透气系统布置优化[J]. 船海工程, 2019, 48(2): 97-100.
JI D. Layout optimization of inert gas and ventilation system in cargo hold of large oil tanker[J]. Ship & Ocean Engineering, 2019, 48(2): 97-100. (in Chinese)
|
[25] |
刘明, 尹其峰, 熊振东, 等. 液化气船液货区域通风设计[J]. 船海工程, 2022, 51(1): 115-119.
LIU M, YIN Q F, XIONG Z D, et al. Ventilation design of liquefied gas tanker cargo area[J]. Ship & Ocean Engineering, 2022, 51(1): 115-119. (in Chinese)
|
[26] |
刘东进, 甘少炜, 顾华, 等. LNG SPB型独立液货舱设计分析[J]. 船海工程, 2017, 46(4): 102-105.
LIU D J, GAN S W, GU H, et al. Design analysis of LNG SPB independent cargo tank[J]. Ship & Ocean Engineering, 2017, 46(4): 102-105. (in Chinese)
|
[27] |
章瑶, 郑雷, 刘正浩, 等. 基于回归算法的MARK Ⅲ薄膜型LNG运输船结构分析优化[J]. 舰船科学技术, 2024, 46 (8): 37-41.
ZHANG Y, ZHENG L, LIU Z H, et al. Structural analysis and optimization of MARK Ⅲ membrane LNG carrier based on regression algorithm[J]. Ship Science and Technology. 2024, 46(8): 37-41. (in Chinese)
|
[28] |
吕植勇, 赵裕, 易俊威, 等. 基于系统动力学的内河危化品运输系统安全管理研究[J]. 安全与环境学报, 2021, 21(5): 2114-2120.
LYU Z Y, ZHAO Y, YI J W, et al. Transportation of dangerous chemicals in inland rivers based on system dynamics research on system security management[J]. Journal of Safety and Environment, 2021, 21(5): 2114-2120. (in Chinese)
|
[29] |
刘清, 杨锬, 杨柳, 等. 内河危化品运输从业人员安全行为能力影响机理[J]. 中国航海, 2021, 44(3): 7-12, 19.
LIU Q, YANG T, YANG L, et al. Influencing factors of safety behavior capacity of workers in inland hazardous chemicals transport industry[J]. Navigation of China, 2021, 44(3): 7-12, 19. (in Chinese)
|
[30] |
郝勇, 时间, 吴昊旻. 基于冰山模型的长江危险品船船员素质评价指标体系构建[J]. 安全与环境学报, 2020, 20(4): 1376-1383.
HAO Y, SHI J, WU H M. Construction of quality evaluation index system for the crew of dangerous goods ship in the Yangtze River Based on iceberg model[J]. Journal of Safety and Environment, 2020, 20(4): 1376-1383. (in Chinese)
|
[31] |
刘文宝. 智能化船舶航行安全风险预警与防控在油轮安全管理中的应用[J]. 中国船检, 2023, 25(11): 19-23.
LIU W B. Application of intelligent ship navigation safety risk early warning and prevention in Tanker Safety Management[J]. China Ship Survey, 2023, 25(11): 19-23. (in Chinese)
|
[32] |
薄文彦, 赵磊, 曲霄红. 无线射频技术在船舶危险品运输管理中的应用[J]. 舰船科学技术, 2023, 45(18): 186-189.
BO W Y, ZHAO L, QU X H. Application of radio frequency technology in ship dangerous goods transportation management[J]. Ship Science and Technology, 2023, 45(18): 186-189. (in Chinese)
|
[33] |
许环运, 黄志勇, 武江涛, 等. 基于VLCC的液货智能管理系统设计技术[J]. 船舶工程, 2020, 42(3): 19-22.
XU H Y, HUANG Z Y, WU J T, et al. Design technology of liquid cargo intelligent management system based on VLCC[J]. Ship Engineering, 2020, 42(3): 19-22. (in Chinese)
|
[34] |
刘明明, 胡甚平, 郭云龙, 等. 集装箱化危险品船载运输风险因子辨识[J]. 中国安全科学学报, 2017, 27(10): 168-174.
LIU M M, HU S P, GUO Y L, et al. Risk factors identification of containerization dangerous goods on board[J]. China Safety Science Journal, 2017, 27(10): 168-174. (in Chinese)
|
[35] |
张帆, 周涂强. 基于FSA的LNG燃料动力船过闸安全性[J]. 中国航海, 2016, 39(2): 82-86.
ZHANG F, ZHOU T Q, Safety assessment of LNG fuel ship passing through Three Gorges Dam lock[J]. Navigation of China, 2016, 39(2): 82-86. (in Chinese)
|
[36] |
李清, 甘少炜. 内河LNG燃料动力船通过船闸的风险评估方法[J]. 船海工程, 2016, 45(3): 6-11.
LI Q, GAN S W. Risk assessment method of inland LNG fuel powered ship passing through lock[J]. Ship & Ocean Engineering, 2016, 45(3): 6-11. (in Chinese)
|
[37] |
朱清华, 胡甚平, 田力, 等. 基于二维灰云模型的LNG动力船航行过程风险推理[J]. 中国安全生产科学技术, 2021, 17(6): 180-186.
ZHU Q H, HU S P, TIAN L, et al. Risk reasoning on navigation process of LNG-fueled ship based on two-dimensional gray cloud model[J]. Journal of Safety Science and Technology, 2021, 17(6): 180-186. (in Chinese)
|
[38] |
郑庆功, 吴宛青, 宋明. 内河LNG动力船机舱NG泄漏爆炸对人员的损伤后果[J]. 中国航海, 2019, 42(4): 51-58.
ZHENG Q G, WU Y Q, SONG M. Possible casualties of NG explosion in engine room on LNG fueled inland river ship[J]. Navigation of China, 2019, 42(4): 51-58. (in Chinese)
|
[39] |
邓健, 张育铭, 史洪宾, 等. 内河LNG燃料动力船隧洞通航燃料泄漏风险评估研究[J]. 中国航海, 2021, 44(2): 108-113, 133.
DENG J, ZHANG Y M, SHI H B, et al. Assessment of risks associated with fuel leakage of LNG powered inland ships in tunnel[J]. Navigation of China, 2021, 44(2): 108-113, 133. (in Chinese)
|
[40] |
韩晨健, 周春奇, 李攀, 等. 化学品船液货舱泄爆参数分析及优化评估[J]. 舰船科学技术, 2023, 45(8): 10-14.
HAN C J, ZHOU C Q, LI P, et al. Parameter analyzing and optimizing of chemical tanker cargo hold explosion[J]. Ship Science and Technology, 2023, 45(8): 10-14. (in Chinese)
|
[41] |
席永涛, 贾哲, 付姗姗, 等. STAMP框架下化学品船智能液货系统风险分析[J]. 安全与环境学报, 2023, 23(4): 1005-1013.
XI Y T, JIA Z, FU S S, et al. Risk analysis of the intelligent liquid cargo system of the chemical tanker under the STAMP framework[J]. Journal of Safety and Environment, 2023, 23(4): 1005-1013. (in Chinese)
|
[42] |
文元桥, 宋荣鑫, 张帆, 等. 长江干线船舶事故性溢油应急处置模式与应急站点选址研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 18-22, 27.
WEN Y Q, SONG R X, ZHANG F, et al. Study on emergence disposal mode and site selection of accident oil spill from ships in Yangtze river trunk line[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 18-22, 27. (in Chinese)
|
[43] |
LIU X J, WANG Q, ZHANG A L, et al. Ship dispatching scheme of marine oil spill emergency material based on genetic algorithm[C]. 6th International Conference on Transportation Engineering, Reston, VA: American Society of Civil Engineers, 2019.
|
[44] |
YI A N, ZHANG H M. Oil spill collection boom of ship based on negative pressure principle[C]. 5th International Conference on Advances in Energy Resources and Environment Engineering, Chongqing, China: Yantai University, 2019.
|
[45] |
李尚宇, 邓健, 马泽泰, 等. 面向内河船舶污染应急的溢油浮标系统[J]. 船舶工程, 2021, 43(7): 102-106.
LI S Y, DENG J, MA Z T, et al. Oil spill buoy system for pollution emergency of inland ships[J]. Ship Engineering, 2021, 43(7): 102-106. (in Chinese)
|
[46] |
甘水来, 蒋伟. 超大型油船溢油防护结构设计研究[J]. 船舶工程, 2016, 38(3): 5-9.
GAN S L, JIANG W. Design Study of spill coaming on very large crude carrier[J]. Ship Engineering, 2016, 38(3): 5-9. (in Chinese)
|