Citation: | SHI Zhipeng, JIN Yuzhe, KE Ji, WANG Biao, ZHANG Yipu. A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas[J]. Journal of Transport Information and Safety, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016 |
[1] |
杨勇平, 武平, 程鹏, 等. 我国陆路交通能源系统发展战略研究[J]. 中国工程科学, 2022, 24(3): 153-162.
YANGY P, WU P, CHENG P, etal. Development strategy for energy system ofland transport in China[J]. Engineering Sciences, 2022, 24(3): 153-162. (in Chinese)
|
[2] |
蒋海峰, 黄森炎, 刘志强, 等. 公路交通设施与清洁能源融合创新技术与发展[J]. 公路交通科技, 2020, 37(增刊2): 1-5.
JIANG H F, HUANG S Y, LIU Z Q, et a-l. Innovative technology and development of integration of highway trafficfacilities and clean energy[J]. Journal of Highway and Transportation Research and Development, 2020, 37(S2): 1-5. (in Chinese)
|
[3] |
李瑞杰. 面向绿色低碳的韧性公路交通-能源融合发展技术和展望[J]. 交通节能与环保, 2024, 20(5): 1-7.
LI R J. Development technology and prospect for green and low-carbon resilient road transportenergy Integration[J]. Transport Energy Conservation & Environmental, 2024, 20 (5): 1-7. (in Chinese).
|
[4] |
贾利民, 师瑞峰, 吉莉, 等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.
JIA L M, SHI R F, JI L, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(3): 163-172. (in Chinese).
|
[5] |
毛宁, 于琦, 刘杰, 等. 交能融合宏观策略与技术路径[J]. 中国公路, 2022(22): 28-31.
MAO N, YU Q, LIU J, et al. Macro strategies and technical pathways for the integration of transportation and energy[J]. China Highway, 2022(22): 28-31. (in Chinese).
|
[6] |
桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.
SANG B, ZHANG T, LIU Y J, et al. Energy management system research of multi-microgrid: a review[J]. Proceedings of the CSEE, 2020, 40(10): 3077-3093. (in Chinese)
|
[7] |
刘继文, 侯强. 基于文献计量的微电网博弈调度研究热点分析[J]. 电气技术, 2023, 24(6): 13-20. doi: 10.3969/j.issn.1673-3800.2023.06.003
LIU J W, HOU Q, Hotspots analysis of research and development trend of microgrid game dispatching based on information visualization[J]. Electrical Engineering, 2023, 24(6): 13-20. (in Chinese) doi: 10.3969/j.issn.1673-3800.2023.06.003
|
[8] |
汪诗怡, 艾芊. 含微电网的电力系统状态估计研究[J]. 电器与能效管理技术, 2014(16): 33-38.
WANG S Y, AI Q, Analysis on power system state estimation with microgrid[J]. Low Voltage Apparatus, 2014(16): 33-38. (in Chinese)
|
[9] |
RANA M, LI L. Kalman filter based microgrid state estimation using the internet of things communication network[C]. 12th International Conference on Information Technology-New Generations, Nevada USA: IEEE, 2015.
|
[10] |
SUN H, FENG G, NIKOVSKI D, et al. Dynamic state estimation based on unscented Kalman filter and very short-term load and distributed generation forecasting[C]. International Conference on Power System Technology. Wollongong, NSW, Australia: IEEE, 2016.
|
[11] |
YANG S, TAN Y, TAN Q, et al. State estimation of electromagnetic scanning micro-mirrors using unscented Kalman filtering method[C]. International Conference on Realtime Computing and Robotics(RCAR), Datong, China: IEEE, 2023.
|
[12] |
刘晓莉, 曾祥晖, 黄翊阳, 等. 联合粒子滤波和卷积神经网络的电力系统状态估计方法[J]. 电网技术, 2020, 44(9): 3361-3367.
LIU X L, ZENG X H, HUANG Y Y et al. State estimation based on particle filtering and convolutional neural networks for power systems[J]. Power System Technology, 2020, 44 (9): 3361-3367. (in Chinese)
|
[13] |
MBUNGU N T, ISMAIL A A, ALSHAHI M, et al. Control and estimation techniques applied to smart microgrids: a review[J]. Renewable and Sustainable Energy Reviews, 2023: 113251.
|
[14] |
黄小庆, 陈颉, 陈永新, 等. 大数据背景下的充电站负荷预测方法[J]. 电力系统自动化, 2016, 40(12): 68-74.
HUANG X Q, CHEN J, CHEN Y X, et al. Charging station load forecasting method in the context of big data[J]. Automation of Electric Power System, 2016, 40(12): 68-74. (in Chinese).
|
[15] |
张明辉, 周亚同, 孔晓然. 基于深度混合储备池计算模型的短期电力负荷预测[J]. 电网技术, 2022, 46(12): 4751-4762.
ZHANG M H, ZHOU Y T, KONG X R. Short-term electrical load prediction based on deep hybrid reservoir calculation model[J]. Power System Technology, 2022, 46(12): 4751-4762. (in Chinese)
|
[16] |
锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38(10): 141-147.
SUO J, LI L, HE H Q, et al. Load forecasting of electric vehicle charging considering traffic conditions[J]. Power System and Clean Energy, 2022, 38(10): 141-147. (in Chinese)
|
[17] |
罗浩成, 胡泽春, 张洪财. 环境温度对电动汽车充电负荷的影响分析[J]. 电力建设, 2015, 36(7): 69-74.
LUO H C, HU Z C, ZHANG H C. Effect analysis of ambient temperature on electric vehicle charging load[J]. Electric Power Construction, 2015, 36(7): 69-74. (in Chinese)
|
[18] |
葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.
GE S Y, FENG L, LIU H, et al. Planning of charging stations on highway considering power distribution and driving mileage[J]. EIectric Power Automation Equipment, 2013, 33(7): 111-116. (in Chinese)
|
[19] |
MERAL M E, DINCER F. A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2176-2184.
|
[20] |
周浩杰, 杨建卫, 王尊, 等. 基于LSTM光伏发电功率超短期预测模型研究[J]. 电源技术, 2023, 47(6): 785-789.
ZHOU H J, YANG J W, WANG Z, et al. Research on ultrashort-term prediction model of photovoltaic power generation based on LSTM[J]. Chinese Journal of Power Sources, 2023, 47(6): 785-789. (in Chinese).
|
[21] |
陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表2022, 59(10): 108-116.
CHEN Y F, WEN M, ZHANG K, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention. [J]. Electrial Measurement and Instrumentation, 2022, 59(10): 108-116. (in Chinese).
|
[22] |
LI L L, WEN S Y, TSENG M L, et al. Renewable energy prediction: a novel short-term prediction model of photovoltaic output power[J]. Journal of Cleaner Production, 2019, 228: 359-375.
|
[23] |
焦卫东, 杨蓓. MDAT-Net: 1种融合MSC和时空注意力的TCN航迹预测方法[J]. 北京航空航天大学学报, 2024.
JIAO W D, YANG B. MDAT-Net: A TCN trajectory prediction method fusing MSC and spatio-temporal attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024. (in Chinese).
|
[24] |
张淑清, 李君, 姜安琦, 等. 基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测[ J]. 电网技术, 2022, 46(8): 3269.
ZHANG S Q, LI J, JIANG A Q, et al. A novel two-stage model based on FPA-VMD and BiLSTM neural network for shortterm power load forecasting[J]. Power System Technology, 2022, 46(8): 3269. (in Chinese)
|
[25] |
刘清梅, 万明, 严利鑫, 等. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23.
LIU Q M, WAN M, ZHANG Z Q, et al. A method for predicting traffic accidents based on an ensemble empirical mode decomposition and an optimized LSTM model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. (in Chinese).
|
[26] |
付国忠, 杜华, 张志强, 等. 基于注意力机制和CNN-BiLSTM模型的滚动轴承剩余寿命预测[J]. 核动力工程, 2023, 44(增刊2): 33-38.
FU G Z, DU H, ZHANG Z Q, et al. Remaining useful life prediction of rolling bearings based on attention mechanism and CNN-BiLS-TM[J]. Nuclear Power Engineering, 2023, 44 (S2): 33-38. (in Chinese).
|
[27] |
葛少云, 朱林伟, 刘洪, 等. 基于动态交通仿真的高速公路电动汽车充电站规划[J]. 电工技术学报, 2018, 33(13): 2991-3001.
GE S Y, ZHU L W, LIU H, et al. Optimal deployment of electric vehicle charging stations on the highway based on dynamic traffic simulation[J]. Transactions Of China Electrotec-hnical Society, 2018, 33(13): 2991-3001. (in Chinese)
|
[28] |
刘珏, 穆云飞, 董晓红, 等. 考虑交通时滞的配电-交通耦合系统协同优化运行策略[J/OL]. 电力系统及其自动化学报[2024-10-08].
LIU Y, MU Y F, DONG X H, et al. A collaborative optimization strategy for power-traffic coupling system considering time delay[J/OL]. Proceedings of the CSU-EPSA[2024-10-08]. (in Chinese)
|
[29] |
BAE S, KWASINSKI A. Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid, 2011, 3(1): 394-403.
|
[30] |
葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.
GE S Y, FENG L, LIU H, et al. Plug-and-play technology applied in microgrid and utilitygrid[J]. Electric Power Automation Equipment, 2013, 33(7): 111-116. (in Chinese)
|
[31] |
ARIAS M B, KIM M, BAE S. Prediction of electric vehicle charging-power demand in realistic urban traffic networks[J]. Applied Energy, 2017, 195: 738-753.
|
[32] |
龙雪梅, 杨军, 吴赋章, 等. 考虑路网-电网交互和用户心理的电动汽车充电负荷预测[J]. 电力系统自动化, 2020, 44 (14): 86-93.
LONG X M, YANG J, WU F Z, et al. Prediction of electric vehicle charging load considering interaction between road network and power grid and user's psychology[J]. Automation of Electric Power Systems, 2020, 44(14): 86-93. (in Chinese).
|
[33] |
MA H Y, WANG J H, ZHENG T, et al. A model for electric vehicle charging load forecasting based on simulated driving path[C]. 4th Asia Conference on Power and Electrical Engineering, Hangzhou, China: ACPEE, 2019.
|
[34] |
MEGAN. A Electric range for the nissan leaf & chevrolet volt in coldweather[OL]. (2013-12-16). [2015-05-20].
|
[35] |
王海玲, 张美霞, 杨秀. 基于气温影响的电动汽车充电需求预测[J]. 电测与仪表, 2017, 54(23): 123-128.
WANG H L, ZHANG M X, YANG X. Electric vehicle charging demand forecasting based on influence of weather and temperature[J]. Electrical Measurement & Instrumentation, 2017, 54(23): 123-128. (in Chinese)
|