Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
SHI Zhipeng, JIN Yuzhe, KE Ji, WANG Biao, ZHANG Yipu. A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas[J]. Journal of Transport Information and Safety, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016
Citation: SHI Zhipeng, JIN Yuzhe, KE Ji, WANG Biao, ZHANG Yipu. A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas[J]. Journal of Transport Information and Safety, 2024, 42(5): 173-184. doi: 10.3963/j.jssn.1674-4861.2024.05.016

A Method for Data and Model Driven Estimation of Traffic Self-Consistent Energy System States in Highway Service Areas

doi: 10.3963/j.jssn.1674-4861.2024.05.016
  • Received Date: 2024-01-31
  • The development construction of a self-consistent energy system for highway service areas is essential technology for integrating transportation and energy. A key focus for recent research is system state estimation. Given the complexity and diversity of these energy systems, relying soley on either data-driven or model-driven approaches often leads to challenges in accurately and comprehensively estimating real-time system states. Therefore, this study explores a hybrid method combining data-driven and model-driven approaches for more efficient system state estimation. In terms of data-driven methods, although deep learning-based photovoltaic power forecasting models demonstrate superior performance, they fail to account for the interdependencies among input features. To address this issue, we developed a Time Convolution-Bidirectional Long Short-Term Memory network (TCN-BiLSTM-SA) based on a Self-Attention mechanism (SA) to predict the photovoltaic output of the system. The SA module adjusts redistributes the weights of the TCN-BiLSTM input features, improving the extraction of spatiotemporal information. On the model-driven side, considering the traffic flow distribution of highway networks, we established a probability model for electric vehicle travel trajectories. By utilizing Monte Carlo simulations, the initial and charging battery capacities are extracted while accounting for various uncertainties such as driver behavior and environmental temperature, thereby approximating accurate results to predict the spatiotemporal distribution of electric vehicle charging loads. Simulation validation using actual data from a self-consistent energy system at a highway service area in Xinjiang indicated that, in terms of photovoltaic forecasting, the proposed model improved the mean absolute error, root mean square error, and coefficient of determination by 25.3%, 16.7%, and 0.7%, respectively, compared to the best model. Furthermore, the proposed model effectively predicted the spatiotemporal distribution of electric vehicle charging loads on highways, achieving a system state estimation accuracy of 89.1%.

     

  • loading
  • [1]
    杨勇平, 武平, 程鹏, 等. 我国陆路交通能源系统发展战略研究[J]. 中国工程科学, 2022, 24(3): 153-162.

    YANGY P, WU P, CHENG P, etal. Development strategy for energy system ofland transport in China[J]. Engineering Sciences, 2022, 24(3): 153-162. (in Chinese)
    [2]
    蒋海峰, 黄森炎, 刘志强, 等. 公路交通设施与清洁能源融合创新技术与发展[J]. 公路交通科技, 2020, 37(增刊2): 1-5.

    JIANG H F, HUANG S Y, LIU Z Q, et a-l. Innovative technology and development of integration of highway trafficfacilities and clean energy[J]. Journal of Highway and Transportation Research and Development, 2020, 37(S2): 1-5. (in Chinese)
    [3]
    李瑞杰. 面向绿色低碳的韧性公路交通-能源融合发展技术和展望[J]. 交通节能与环保, 2024, 20(5): 1-7.

    LI R J. Development technology and prospect for green and low-carbon resilient road transportenergy Integration[J]. Transport Energy Conservation & Environmental, 2024, 20 (5): 1-7. (in Chinese).
    [4]
    贾利民, 师瑞峰, 吉莉, 等. 我国道路交通与能源融合发展战略研究[J]. 中国工程科学, 2022, 24(3): 163-172.

    JIA L M, SHI R F, JI L, et al. Road transportation and energy integration strategy in China[J]. Strategic Study of CAE, 2022, 24(3): 163-172. (in Chinese).
    [5]
    毛宁, 于琦, 刘杰, 等. 交能融合宏观策略与技术路径[J]. 中国公路, 2022(22): 28-31.

    MAO N, YU Q, LIU J, et al. Macro strategies and technical pathways for the integration of transportation and energy[J]. China Highway, 2022(22): 28-31. (in Chinese).
    [6]
    桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.

    SANG B, ZHANG T, LIU Y J, et al. Energy management system research of multi-microgrid: a review[J]. Proceedings of the CSEE, 2020, 40(10): 3077-3093. (in Chinese)
    [7]
    刘继文, 侯强. 基于文献计量的微电网博弈调度研究热点分析[J]. 电气技术, 2023, 24(6): 13-20. doi: 10.3969/j.issn.1673-3800.2023.06.003

    LIU J W, HOU Q, Hotspots analysis of research and development trend of microgrid game dispatching based on information visualization[J]. Electrical Engineering, 2023, 24(6): 13-20. (in Chinese) doi: 10.3969/j.issn.1673-3800.2023.06.003
    [8]
    汪诗怡, 艾芊. 含微电网的电力系统状态估计研究[J]. 电器与能效管理技术, 2014(16): 33-38.

    WANG S Y, AI Q, Analysis on power system state estimation with microgrid[J]. Low Voltage Apparatus, 2014(16): 33-38. (in Chinese)
    [9]
    RANA M, LI L. Kalman filter based microgrid state estimation using the internet of things communication network[C]. 12th International Conference on Information Technology-New Generations, Nevada USA: IEEE, 2015.
    [10]
    SUN H, FENG G, NIKOVSKI D, et al. Dynamic state estimation based on unscented Kalman filter and very short-term load and distributed generation forecasting[C]. International Conference on Power System Technology. Wollongong, NSW, Australia: IEEE, 2016.
    [11]
    YANG S, TAN Y, TAN Q, et al. State estimation of electromagnetic scanning micro-mirrors using unscented Kalman filtering method[C]. International Conference on Realtime Computing and Robotics(RCAR), Datong, China: IEEE, 2023.
    [12]
    刘晓莉, 曾祥晖, 黄翊阳, 等. 联合粒子滤波和卷积神经网络的电力系统状态估计方法[J]. 电网技术, 2020, 44(9): 3361-3367.

    LIU X L, ZENG X H, HUANG Y Y et al. State estimation based on particle filtering and convolutional neural networks for power systems[J]. Power System Technology, 2020, 44 (9): 3361-3367. (in Chinese)
    [13]
    MBUNGU N T, ISMAIL A A, ALSHAHI M, et al. Control and estimation techniques applied to smart microgrids: a review[J]. Renewable and Sustainable Energy Reviews, 2023: 113251.
    [14]
    黄小庆, 陈颉, 陈永新, 等. 大数据背景下的充电站负荷预测方法[J]. 电力系统自动化, 2016, 40(12): 68-74.

    HUANG X Q, CHEN J, CHEN Y X, et al. Charging station load forecasting method in the context of big data[J]. Automation of Electric Power System, 2016, 40(12): 68-74. (in Chinese).
    [15]
    张明辉, 周亚同, 孔晓然. 基于深度混合储备池计算模型的短期电力负荷预测[J]. 电网技术, 2022, 46(12): 4751-4762.

    ZHANG M H, ZHOU Y T, KONG X R. Short-term electrical load prediction based on deep hybrid reservoir calculation model[J]. Power System Technology, 2022, 46(12): 4751-4762. (in Chinese)
    [16]
    锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38(10): 141-147.

    SUO J, LI L, HE H Q, et al. Load forecasting of electric vehicle charging considering traffic conditions[J]. Power System and Clean Energy, 2022, 38(10): 141-147. (in Chinese)
    [17]
    罗浩成, 胡泽春, 张洪财. 环境温度对电动汽车充电负荷的影响分析[J]. 电力建设, 2015, 36(7): 69-74.

    LUO H C, HU Z C, ZHANG H C. Effect analysis of ambient temperature on electric vehicle charging load[J]. Electric Power Construction, 2015, 36(7): 69-74. (in Chinese)
    [18]
    葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.

    GE S Y, FENG L, LIU H, et al. Planning of charging stations on highway considering power distribution and driving mileage[J]. EIectric Power Automation Equipment, 2013, 33(7): 111-116. (in Chinese)
    [19]
    MERAL M E, DINCER F. A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2176-2184.
    [20]
    周浩杰, 杨建卫, 王尊, 等. 基于LSTM光伏发电功率超短期预测模型研究[J]. 电源技术, 2023, 47(6): 785-789.

    ZHOU H J, YANG J W, WANG Z, et al. Research on ultrashort-term prediction model of photovoltaic power generation based on LSTM[J]. Chinese Journal of Power Sources, 2023, 47(6): 785-789. (in Chinese).
    [21]
    陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表2022, 59(10): 108-116.

    CHEN Y F, WEN M, ZHANG K, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention. [J]. Electrial Measurement and Instrumentation, 2022, 59(10): 108-116. (in Chinese).
    [22]
    LI L L, WEN S Y, TSENG M L, et al. Renewable energy prediction: a novel short-term prediction model of photovoltaic output power[J]. Journal of Cleaner Production, 2019, 228: 359-375.
    [23]
    焦卫东, 杨蓓. MDAT-Net: 1种融合MSC和时空注意力的TCN航迹预测方法[J]. 北京航空航天大学学报, 2024.

    JIAO W D, YANG B. MDAT-Net: A TCN trajectory prediction method fusing MSC and spatio-temporal attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024. (in Chinese).
    [24]
    张淑清, 李君, 姜安琦, 等. 基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测[ J]. 电网技术, 2022, 46(8): 3269.

    ZHANG S Q, LI J, JIANG A Q, et al. A novel two-stage model based on FPA-VMD and BiLSTM neural network for shortterm power load forecasting[J]. Power System Technology, 2022, 46(8): 3269. (in Chinese)
    [25]
    刘清梅, 万明, 严利鑫, 等. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23.

    LIU Q M, WAN M, ZHANG Z Q, et al. A method for predicting traffic accidents based on an ensemble empirical mode decomposition and an optimized LSTM model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. (in Chinese).
    [26]
    付国忠, 杜华, 张志强, 等. 基于注意力机制和CNN-BiLSTM模型的滚动轴承剩余寿命预测[J]. 核动力工程, 2023, 44(增刊2): 33-38.

    FU G Z, DU H, ZHANG Z Q, et al. Remaining useful life prediction of rolling bearings based on attention mechanism and CNN-BiLS-TM[J]. Nuclear Power Engineering, 2023, 44 (S2): 33-38. (in Chinese).
    [27]
    葛少云, 朱林伟, 刘洪, 等. 基于动态交通仿真的高速公路电动汽车充电站规划[J]. 电工技术学报, 2018, 33(13): 2991-3001.

    GE S Y, ZHU L W, LIU H, et al. Optimal deployment of electric vehicle charging stations on the highway based on dynamic traffic simulation[J]. Transactions Of China Electrotec-hnical Society, 2018, 33(13): 2991-3001. (in Chinese)
    [28]
    刘珏, 穆云飞, 董晓红, 等. 考虑交通时滞的配电-交通耦合系统协同优化运行策略[J/OL]. 电力系统及其自动化学报[2024-10-08].

    LIU Y, MU Y F, DONG X H, et al. A collaborative optimization strategy for power-traffic coupling system considering time delay[J/OL]. Proceedings of the CSU-EPSA[2024-10-08]. (in Chinese)
    [29]
    BAE S, KWASINSKI A. Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid, 2011, 3(1): 394-403.
    [30]
    葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.

    GE S Y, FENG L, LIU H, et al. Plug-and-play technology applied in microgrid and utilitygrid[J]. Electric Power Automation Equipment, 2013, 33(7): 111-116. (in Chinese)
    [31]
    ARIAS M B, KIM M, BAE S. Prediction of electric vehicle charging-power demand in realistic urban traffic networks[J]. Applied Energy, 2017, 195: 738-753.
    [32]
    龙雪梅, 杨军, 吴赋章, 等. 考虑路网-电网交互和用户心理的电动汽车充电负荷预测[J]. 电力系统自动化, 2020, 44 (14): 86-93.

    LONG X M, YANG J, WU F Z, et al. Prediction of electric vehicle charging load considering interaction between road network and power grid and user's psychology[J]. Automation of Electric Power Systems, 2020, 44(14): 86-93. (in Chinese).
    [33]
    MA H Y, WANG J H, ZHENG T, et al. A model for electric vehicle charging load forecasting based on simulated driving path[C]. 4th Asia Conference on Power and Electrical Engineering, Hangzhou, China: ACPEE, 2019.
    [34]
    MEGAN. A Electric range for the nissan leaf & chevrolet volt in coldweather[OL]. (2013-12-16). [2015-05-20]. http://www.Fleetcarma.com/nissan-leaf-chevrolet-volt-cold-weaer-range-loss.
    [35]
    王海玲, 张美霞, 杨秀. 基于气温影响的电动汽车充电需求预测[J]. 电测与仪表, 2017, 54(23): 123-128.

    WANG H L, ZHANG M X, YANG X. Electric vehicle charging demand forecasting based on influence of weather and temperature[J]. Electrical Measurement & Instrumentation, 2017, 54(23): 123-128. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (55) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return