Citation: | XU Xianfeng, LU Wanqi, WANG Junzhe, LU Yong, LI Longjie, BAI Xinhe, LI Zhihan. A Joint Optimization Method for Berth Allocation and Energy Scheduling Based on Non-dominated Sorting Dung Beetle Optimizer[J]. Journal of Transport Information and Safety, 2024, 42(5): 111-123. doi: 10.3963/j.jssn.1674-4861.2024.05.011 |
[1] |
TAO Y C, QIU J, LAI S Y, et al. Flexible voyage scheduling and coordinated energy management strategy of all-electric ships and seaport microgrid[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3211-3222.
|
[2] |
蒋一鹏, 袁成清, 袁裕鹏, 等". 双碳"战略下中国港口与清洁能源融合发展路径探析[J]. 交通信息与安全, 2023, 41(2): 139-146. doi: 10.3963/j.jssn.1674-4861.2023.02.015
JANG Y P, YUAN C G, YUAN Y P, et al. Pathway for Integrated development of port and clean energy under strategy of carbon peaking and carbon Neutralization in China[J]. Journal of Transport Information and Safety, 2023, 41(2): 139-146. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.015
|
[3] |
AHAMAD N B B, GUERRERO J M, SU C L, et al. Microgrids technologies in future seaports[C]. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, Palermo, Italy: IEEE, 2018.
|
[4] |
方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(二): 能源-交通融合中的柔性资源与关键技术[J]. 中国电机工程学报, 2023, 43(3): 950-969.
FANG S D, ZHAO C H, DING Z H, et al. Port integrated energy systems toward carbon neutrality(Ⅱ): flexible resources and key technologies in energy-transportation integration[J]. Proceedings of the CSEE, 2023, 43(3): 950-968. (in Chinese)
|
[5] |
BOUZEKRI H, ALPAN G, GIARD V. Integrated laycan and berth allocation and time-invariant quay crane assignment problem in tidal ports with multiple quays[J]. European Journal of Operational Research, 2021, 293(3): 892-909. doi: 10.1016/j.ejor.2020.12.056
|
[6] |
BACALHAU E T, CASACIO L, DEAZEVEDOAT. New hybrid genetic algorithms to solve dynamic berth allocation problem[J]. Expert Systems With Applications, 2021, 167: 114198. doi: 10.1016/j.eswa.2020.114198
|
[7] |
YU J J, TANG G L, VOSS S, et al. Berth allocation and quay crane assignment considering the adoption of different green technologies[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103185. doi: 10.1016/j.tre.2023.103185
|
[8] |
桂小娅, 陆志强, 韩笑乐. 集装箱码头连续型泊位与岸桥集成调度[J]. 上海交通大学学报, 2013, 47(2): 226-229.
GUI X Y, LU Z Q, HAN X L. Integrating optimization method for continuous berth and quay crane scheduling in container terminals[J]. Journal of Shanghai Jiaotong University, 2013, 47(2): 226-229. (in Chinese)
|
[9] |
YU J J, TANG G L, SONG X Q. Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 160: 102651. doi: 10.1016/j.tre.2022.102651
|
[10] |
YU J J, TANG G L, VOSS S, et al. Berth allocation and quay crane assignment considering the adoption of different green technologies[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103185. green technologies[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 176: 103185. doi: 10.1016/j.tre.2023.103185
|
[11] |
代永该, 庞利宝, 黄麟富. 考虑能耗的集装箱码头泊位与岸边集装箱起重机联合调度研究[J]. 港口装卸, 2023, (3): 33-38.
DAI Y G, PANG L B, HUANG L F. Study on joint dispatching of container terminal berths and quayside container cranes considering energy consumption[J]. Port Operation, 2023, (3): 33-38. (in Chinese)
|
[12] |
SONG T L, LI Y, ZHANG X P, et al. Integrated port energy system considering integrated demand response and energy interconnection[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105654.
|
[13] |
王萧博, 黄文焘, 邰能灵, 等. 面向源储优化配置的港口微电网运行场景高保真压缩与重构方法[J]. 中国电机工程学报, 2023, 43(15): 5839-5850.
WANG X B, HUANG W T, TAI N L, et al. A high-fidelity compression and reconstruction method of port microgrid operation scenarios for optimal source-storage allocation[J]. Proceedings of the CSEE, 2023, 43(15): 5839-5850. (in Chinese)
|
[14] |
THIRUNAVUKKARASU G S, SEYEDMAHMOUDIAN M, JAMEI E, et al. Role of optimization techniques in microgrid energy management systems: a review[J]. Energy Strategy Reviews, 2022, 43: 100899. doi: 10.1016/j.esr.2022.100899
|
[15] |
WANG Y, DONG W, YANG Q. Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets[J]. Applied Energy, 2022, 310: 118528. doi: 10.1016/j.apenergy.2022.118528
|
[16] |
MERABET A, AL-DURRA A, EL-SAADANY E F. Energy management system for optimal cost and storage utilization of renewable hybrid energy microgrid[J]. Energy Conversion and Management, 2022, 252: 115116. doi: 10.1016/j.enconman.2021.115116
|
[17] |
ROSLAN M F, HANNAN M A, KER P J, et al. Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction[J]. Applied Energy, 2021, 292: 116883. doi: 10.1016/j.apenergy.2021.116883
|
[18] |
FANG S D, WANG Y, GOU B, et al. Towards future green maritime transportation: an overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 207-219. doi: 10.1109/TVT.2019.2950538
|
[19] |
MAO A J, YU T T, DING Z H, et al. Optimal scheduling for seaport integrated energy system considering flexible berth allocation[J]. Applied Energy, 2022, 308: 118386. doi: 10.1016/j.apenergy.2021.118386
|
[20] |
IRIS C, LAM J S L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty[J]. Omega-international Journal of Management Science, 2021, 103: 102445.
|
[21] |
普月, 刘皓明, 王健, 等. 考虑多源激励的港口能流-物流全过程协同调度优化[J]. 中国电机工程学报, 2023, 43 (20): 7912-7929.
PU Y, LIU H M, WANG J, et al. Co-scheduling optimisation of the whole process of energy flow-logistics in ports considering multi-source incentives[J]. Proceedings of the CSEE, 2023, 43(20): 7912-7929. (in Chinese)
|
[22] |
ZHANG Y, LIANG C J, SHI J, et al. Optimal port microgrid scheduling incorporating onshore power supply and berth allocation under uncertainty[J]. Applied Energy, 2022, 313: 118856. doi: 10.1016/j.apenergy.2022.118856
|
[23] |
FAN S L, AI Q A, XU G D, et al. Cooperative coordination between port microgrid and berthed ships with emission limitation and peak awareness[J]. Energy Reports, 2023, (9): 1657-1670.
|
[24] |
XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. doi: 10.1007/s11227-022-04959-6
|
[25] |
RAMIREZ-OCHOA D D, PEREZ-DOMINGUEZ LA, MARTINEZ-GOMEZ E A, et al. PSO, a swarm intelligence-based evolutionary algorithm as a decision-making strategy: a review[J]. Symmetry, 2022, 14(3): 455-458. doi: 10.3390/sym14030455
|
[26] |
WU R C, SONG J C, HAO M R, et al. Short term load forecasting method for regional intelligent distribution network based on deep learning[C]. 7th International Conference on Smart Grid and Smart Cities, Lanzhou, China: IEEE, 2023.
|
[27] |
SHOU S A, LUO H R, ZHANG R H, et al. Power quality monitoring point configuration of distribution network based on dung beetle optimization algorithm considering panoramic perception[C]. 2023 3rd International Conference on Electrical Engineering and Mechatronics Technology, NanJing, China: IEEE, 2023.
|
[28] |
WANG Z D, HUANG L L, YANG S X, et al. A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization[J]. Alexandria Engineering Journal, 2023, 81: 469-488. doi: 10.1016/j.aej.2023.09.042
|