Citation: | LI Kai, SUN Jia, CHEN Fei, TANG Yandong, CAO Peng. A Method for Real-time Detecting Freeway Moving Bottlenecks Using Intelligent Connected Vehicles[J]. Journal of Transport Information and Safety, 2024, 42(5): 24-32. doi: 10.3963/j.jssn.1674-4861.2024.05.003 |
[1] |
杨晓芳, 付强. 移动瓶颈理论研究进展[J]. 计算机工程与应用, 2011, 47 (5): 1-3, 23.
YANG X F, FU Q. Development of moving bottleneck theory[J]. Computer Engineering and Applications, 2011, 47(5): 1-3, 23. (in Chinese)
|
[2] |
NEWELL G F. A moving bottleneck[J]. Transportation Research Part B: Methodological, 1998, 32 (8): 531-537. doi: 10.1016/S0191-2615(98)00007-1
|
[3] |
范翘楚, 曹鹏. 基于无人驾驶车数据的快速路排队长度实时检测方法[J]. 综合运输, 2019, 41 (2): 54-59.
FAN Q C, CAO P. Real-time queue length detection method of expressway based on autonomous vehicles data[J]. China Transportation Review, 2019, 41 (2): 54-59. (in Chinese)
|
[4] |
董礼. 移动瓶颈下高速公路交通拥堵传播及控制策略研究[D]. 兰州: 兰州交通大学, 2019.
DONG L. Research on the propagation and control strategy of expressway traffic congestion under mobile bottleneck[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
|
[5] |
GAZIS D C, HERMAN R. The moving and"phantom"bottlenecks[J]. Transportation Science, 1992, 26 (3): 223-229. doi: 10.1287/trsc.26.3.223
|
[6] |
DAGANZO C F, LAVAL J A. On the numerical treatment of moving bottlenecks[J]. Transportation Research Part B: Methodological, 2005, 39 (1): 31-46. doi: 10.1016/j.trb.2004.02.003
|
[7] |
DAGANZO C F, LAVAL J A. Moving bottlenecks: a numerical method that converges in flows[J]. Transportation Research Part B: Methodological, 2005, 39 (9): 855-863. doi: 10.1016/j.trb.2004.10.004
|
[8] |
MUNOZ J C, DAGANZO C F. Moving bottlenecks: a theory grounded on experimental observation[C]. Transportation and Traffic Theory in the 21st Century. Bingley: Emerald Group Publishing Limited, 2002.
|
[9] |
DAGANZO C F. A behavioral theory of multi-lane traffic flow. Part Ⅰ: long homogeneous freeway sections[J]. Transportation Research Part B: Methodological, 2002, 36 (2): 131-158. doi: 10.1016/S0191-2615(00)00042-4
|
[10] |
WEGERLE D, KERNER B S, SCHRECKENBERG M, et al. Prediction of moving bottleneck through the use of probe vehicles: a simulation approach in the framework of three-phase traffic theory[J]. Journal of Intelligent Transportation Systems, 2020, 24 (6): 598-616. doi: 10.1080/15472450.2019.1652825
|
[11] |
郝威, 梁聪, 张兆磊, 等. 车路协同下避让紧急车辆协同换道策略[J]. 交通信息与安全, 2022, 40 (4): 92-100. doi: 10.3963/j.jssn.1674-4861.2022.04.010
HAO W, LIANG C, ZHANG Z L et al. A cooperative lane changing strategy to give way to emergency vehicles with the cooperative vehicle infrastructure system[J]. Journal of Transport Information and Safety, 2022, 40(4): 92-100. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.010
|
[12] |
YAO W, ZENG Q Q, LIN Y P et al. On-road vehicle trajectory collection and scene-based lane change analysis: Part Ⅱ[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (1): 206-220. doi: 10.1109/TITS.2016.2571724
|
[13] |
CAO P, FAN Q C, LIU X B. Real-time detection of end-of-queue shockwaves on freeways using probe vehicles with spacing equipment[J]. IET Intelligent Transport Systems, 2018, 12 (10): 1227-1235. doi: 10.1049/iet-its.2018.5124
|
[14] |
范翘楚. 基于自动驾驶车数据的高速路排队检测研究[D]. 成都: 西南交通大学, 2019.
FAN Q C. Research on highway queuing detection based on autonomous vehicle data[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[15] |
KERNER B S, KLENOV S L. A theory of traffic congestion at moving bottlenecks[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43: 425101. doi: 10.1088/1751-8113/43/42/425101
|
[16] |
许庆, 王嘉伟, 王建强, 等. 网联通信时延下的混合队列控制特性分析[J]. 交通信息与安全, 2021, 39 (1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015
XU Q, WANG J W, WANG J Q et al. A performance analysis of mixed platoon control under communication delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.015
|
[17] |
FARD M R, MOHAYMANY A S, SHAHRI M. A new methodology for vehicle trajectory reconstruction based on wavelet analysis[J]. Transportation Research Part C: Emerging Technologies, 2017, (74): 150-167.
|
[18] |
MONTANINO M, PUNZO V. Making NGSIM data usable for studies on traffic flow theory: multistep method for vehicle trajectory reconstruction[J]. Transportation Research Record, 2013, 2390 (1): 99-111. doi: 10.3141/2390-11
|
[19] |
DONOHO D L, IAIN M. Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81 (3): 425-55. doi: 10.1093/biomet/81.3.425
|
[20] |
刘黎萍, 孙立军. 高速公路不同车道车型组成分析[J]. 中外公路, 2004 (1): 48-51.
LIU L P, SUN L J. Analysis of vehicle types in different lanes of freeway[J]. Sino-Foreign Highway, 2004(1): 48-51. (in Chinese)
|
[21] |
KRAUSS S. Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics[D]. Köln: University Cologne, 1998.
|
[22] |
SUMO, Car-Following-Models[EB/OL]. (2023-09-28)[2024 -05-03].
|
[23] |
ERDMANN J. SUMO' s lane-changing model[C]. Modeling Mobility with Open Data, Berlin, Germany: Springer, 2015.
|
[24] |
SUMO, Definition of vehicles, vehicle types, and routes[EB/ OL]. (2023-10-21)[2024-05-03].
|
[25] |
CAO P, XIONG Z Q, LIU X B. An analytical model for quantifying the efficiency of traffic-data collection using instrumented vehicles[J]. Transportation Research Part C: Emerging Technologies, 2022, 136: 103558.
|
[26] |
LU X Y, SKABARDONIS A. Freeway traffic shockwave analysis: exploring the NGSIM trajectory data[C]. Transportation Research Board 86th Annual Meeting, Washington, D. C.: TRB, 2007.
|