Citation: | WEI Wei, ZHENG Lai, JIAO Hansheng. Deep Learning Prediction of Expressway Traffic Conflicts Based on The Encoder-Decoder Architecture[J]. Journal of Transport Information and Safety, 2024, 42(5): 1-13. doi: 10.3963/j.jssn.1674-4861.2024.05.001 |
[1] |
ZHENG L, ISMAIL K, SAYED T, et al. Bivariate extreme value modeling for road safety estimation[J]. Accident Analysis & Prevention, 2018, 120: 83-91.
|
[2] |
公安部交通管理局. 道路交通事故统计年报[R]. 北京: 公安部交通管理局, 2019.
Ministry of Public Security, Transportation Bureau. The road traffic accidents statistics report in China[R]. Beijing: Ministry of Public Security, Transportation bureau, 2019. (in Chinese)
|
[3] |
孟祥海, 张晓明, 郑来. 基于线形与交通状态的山区高速公路追尾事故预测[J]. 中国公路学报, 2012, 25(4): 113-118. doi: 10.3969/j.issn.1001-7372.2012.04.019
MENG X H, ZHANG X M, ZHENG L, Prediction of rear-end collision on mountainous expressway based on geometric alignment and traffic conditions[J]. China Journal of Highway and Transport, 2012, 25(4): 113-118. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.04.019
|
[4] |
高雪林, 汤厚骏, 沈佳平, 等. 基于XGBoost的高速公路事故类型及严重程度预测方法[J]. 交通信息与安全, 2023, 41 (4): 55-63. doi: 10.3963/j.jssn.1674-4861.2023.04.006
GAO X L, TANG H J, SHEN J P, et al. A method for predicting the type and severity of freeway accidents based on XGBoost[J]. Journal of Transport Information and Safety, 2023, 41(4): 55-63. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.006
|
[5] |
马聪, 张生瑞, 马壮林, 等. 高速公路交通事故非线性负二项预测模型[J]. 中国公路学报, 2018, 31(11): 176-185. doi: 10.3969/j.issn.1001-7372.2018.11.019
MA C, ZHANG S R, MA Z L, et al. Nonlinear negative binomial regression model of expressway traffic accident frequency prediction[J]. China Journal of Highway and Transport, 2018, 31(11): 176-185. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.11.019
|
[6] |
ZHENG L, SAYED T, MANNERING F. Modeling traffic conflicts for use in road safety analysis: a review of analytic methods and future directions[J]. Analytic Methods in Accident Research, 2021, 29: 100142. doi: 10.1016/j.amar.2020.100142
|
[7] |
朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33.
ZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33. (in Chinese)
|
[8] |
郑来, 侯芹忠, 郭延永, 等. 高速公路合流区冲突极值建模与交通事故预测[J]. 公路交通科技, 2022, 39(10): 132-140. doi: 10.3969/j.issn.1002-0268.2022.10.017
ZHENG L, HOU Q Z, GUO Y Y, et al. Conflict extremum modeling and traffic accident prediction for expressway merging areas[J]. Journal of Highway and Transportation Research and Development, 2022, 39(10): 132-140. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.10.017
|
[9] |
郑来, 邓晓庆, 孟祥海. 基于PET极值统计的高速公路车道变换行为安全性研究[J]. 公路交通科技, 2016, 33(8): 120-126.
ZHENG L, DENG X Q. MENG X H. Study on safety of lane changing behaviours on expressway based on PET extreme statistics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8): 120-126. (in Chinese)
|
[10] |
孟祥海, 林兰平. 高速公路分合流区潜在事故风险研究[J]. 中国安全科学学报, 2015, 25(8): 164-170.
MEGN X H, LIN L P. Research on potential crash risk in freeway merging and diverging areas[J]. China Safety Science Journal. 2015, 25(8): 164-170. (in Chinese)
|
[11] |
马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型[J]. 交通运输系统工程与信息, 2018, 18 (2): 142-148.
MA Y L, QI S M, WU H T, et al., Traffic conflicts identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 142-148. (in Chinese)
|
[12] |
戢晓峰, 谢世坤, 覃文文, 等. 基于轨迹数据的山区危险性弯道路段交通事故风险动态预测[J]. 中国公路学报, 2022, 35(4): 277-285. doi: 10.3969/j.issn.1001-7372.2022.04.023
JI X F, XIE S K, QIN W W, et al. Dynamic prediction of traffic accident risk in risky curve sections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2022, 35(4): 277-285. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.04.023
|
[13] |
SUN Y, MALLICK T, BALAPRAKASH P, et al. A data-centric weak supervised learning for highway traffic incident detection[J]. Accident Analysis & Prevention, 2022, 176: 106779.
|
[14] |
ARVIN R, KHATTAK A J, QI H. Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods[J]. Accident Analysis & Prevention, 2021, 151: 105949.
|
[15] |
ZHENG L, HU Z L, SAYED T. Traffic conflict prediction at signal cycle level using Bayesian optimized machine learning approaches[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2677(5): 183-195.
|
[16] |
KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems, Maui, HI, USA: IEEE, 2018.
|
[17] |
ESSA M, SAYED T. Full Bayesian conflict-based models for real time safety evaluation of signalized intersections[J]. Accident Analysis & Prevention, 2019, 129: 367-381.
|
[18] |
GROMPING, U. Variable importance assessment in regression: linear regression versus random forest[J]. The American Statistician, 2009, 63(4), 308-319.
|
[19] |
翁剑成, 孙宇星, 孔宁, 等. 基于多源数据的公交专用道效能评价方法与影响模型[J]. 中国公路学报, 2022, 35(4): 267-276.
WENG J C, SUN Y X, KONG N, et al. Evaluation method and influence model of bus lane performance based on multi-source data[J]. China Journal of Highway and Transport, 2022, 35(4): 267-276. (in Chinese)
|
[20] |
司伟, 茆纬杰, 李宁, 等. 寒区沥青路面智慧化施工混合料温度预估机器学习模型[J]. 中国公路学报, 2023, 36(3): 81-97.
SI W, MAO W J, LI N, et al. Research on machine learning model for temperature prediction of asphalt mixture in intelligent construction of asphalt pavement in cold regions[J]. China Journal of Highway and Transport, 2023, 36(3): 81-97. (in Chinese)
|
[21] |
ZHENG Q K, XU C C, LIU P, et al. Investigating the predictability of crashes on different freeway segments using the real-time crash risk models[J]. Accident Analysis & Prevention, 2021, 159: 106213.
|
[22] |
赵炜华, 刘浩学, 赵建有, 等. 基于BP神经网络的驾驶员昼夜动态空间距离判识规律[J]. 中国公路学报, 2010, 23(2): 92-98.
ZHAO W H, LIU H X, ZHAO J Y, et al. Law of BP neural network-based space distance cognition of driver in dynamic environment at day and night[J]. China Journal of Highway and Transport, 2010, 23(2): 92-98. (in Chinese)
|
[23] |
SHARMA A, VANS E, SHIGEMIZU D, et al. DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture[J]. Scientific Reports, 2019, 9: 11399.
|
[24] |
RAHIM M A, HASSAN H M. A deep learning based traffic crash severity prediction framework[J]. Accident Analysis & Prevention, 2021, 154: 106090.
|
[25] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[26] |
LI P, ABDEL-ATY M, YUAN J H. Real-time crash risk prediction on arterials based on LSTM-CNN[J]. Accident Analysis & Prevention, 2020, 135: 105371.
|
[27] |
WANG H, REN K, SONG J. A closer look at batch size in mini-batch training of deep auto-encoders[C]. 3rd IEEE International Conference on Computer and Communications, Chengdu, China: IEEE, 2017.
|