Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
WANG Chen, ZHANG Lingyun, LIU Bo, ZHANG Hang. An Inspection Method of Urban Road Parking Based on UAV Image[J]. Journal of Transport Information and Safety, 2024, 42(4): 90-101. doi: 10.3963/j.jssn.1674-4861.2024.04.010
Citation: WANG Chen, ZHANG Lingyun, LIU Bo, ZHANG Hang. An Inspection Method of Urban Road Parking Based on UAV Image[J]. Journal of Transport Information and Safety, 2024, 42(4): 90-101. doi: 10.3963/j.jssn.1674-4861.2024.04.010

An Inspection Method of Urban Road Parking Based on UAV Image

doi: 10.3963/j.jssn.1674-4861.2024.04.010
  • Received Date: 2024-01-30
    Available Online: 2024-11-25
  • Efficient and accurate inspection of parked vehicles on urban roads is of significant importance for smart city management. Addressing the issues of low efficiency, high cost, and inaccuracy in current inspection methods, a drone-based image inspection approach is investigated. To enable all-weather inspection, an illumination enhance-ment algorithm is employed to boost images captured under low-light conditions, while a deblurring algorithm is uti-lized to improve the quality of blurred images. To tackle the limitations of the existing YOLOv5 algorithm, includ-ing insufficient detection accuracy and real-time performance, several modifications are introduced. The Fo-cal-EIOU Loss function is optimized to accelerate model convergence. The C3 module is replaced with the C2F module, utilizing varying sizes of convolutional kernels to extract features, enhancing adaptability to targets of dif-ferent sizes and shapes. Furthermore, the SimAM attention mechanism is incorporated to improve the network's ro-bustness and anti-interference capability, predicting 3D attention weights for feature maps without increasing model parameters. The CARAFE operator is adopted for upsampling to expand the receptive field, comprehensively lever-aging semantic information from feature maps. Experimental results demonstrate that the modified YOLOv5 model achieves 5.1% increase in accuracy, 5.9% improvement in recall, and 3.6% enhancement in mean Average Precision (mAP). Secondly, the SVTR character recognition network is utilized to identify license plate numbers, accomplish-ing both feature extraction and text transcription tasks within a single vision model. Finally, field tests conducted on a drone-based engineering application platform reveal that this inspection method can accurately, rapidly, and intelli-gently complete inspections, achieving an accuracy of 90% and a detection speed of 170 frames per second, essentially meeting inspection precision and real-time requirements.

     

  • loading
  • [1]
    梁定康, 钱瑞, 陈义豪, 等. 基于视觉的无人机巡检违章违停系统设计与实现[J]. 电子科技, 2018, 31(5): 76-77, 92.

    LIANG D K, QIAN R, CHEN Y H, et al. Design and implementation of vision-based unmanned aerial vehicle inspectionand parking violation system[J]. Electronic Science and Technology, 2018, 31(5): 76-77, 92. (in Chinese)
    [2]
    冯东明, 余星宇, 黎剑安, 等. 基于无人机的悬索桥主缆自动巡检及小样本表观病害识别[J]. 中国公路学报, 2024, 37 (2): 29-39.

    FENG D M, YU X Y, LI J A, et al. Automatic inspection of main cable of suspension bridge based on UAV and smallsample apparent disease recognition[J]. China Journal of Highway and Transportation, 2024, 37(2): 29-39. (in Chinese)
    [3]
    刘东海, 马子茹, 黄斌, 等. 基于无人机巡检与深度学习的河道整治施工进度图像识别[J]. 水资源与水工程学报, 2024, 35(4): 92-100, 110.

    LIU D H, MA Z R, HUANG B, et al. Image recognition of river regulation construction progress based on UAV inspection and deep learning[J]. Journal of WaterResources and Water Engineering, 2024, 35(4): 92-100, 110. (in Chinese)
    [4]
    赵慧敏, 罗贺, 阴酉龙, 等. 面向集合任务的多无人机电力巡检任务分配方法研究[J/OL]. 系统工程理论与实践, (2024-05-08)[2024-06-10]. http://kns.cnki.net/kcms/detail/11.2267.N.20240507.1609.003.html.

    ZHAO H M, LUO H, YIN Y L, et al. Research on task assignment method of multi-UAV power inspection for ensembletask[J/OL]. System engineering theory and practice, (2024-05-08)[2024-06-10]. http://kns.cnki.net/kcms/detail/11.2267.N.20240507.1609.003.html. (in Chinese)
    [5]
    黄小龙. 无人机巡检图像和蒲公英算法的输电线缆绝缘子缺陷自动检测[J]. 集成电路与嵌入式系统, 2024, 24(8): 64-71.

    HUANG X L. Automatic insulator defect detection of transmission line based on UAV inspection image and dandelion algorithm[J]. Integrated Circuits and Embedded Systems, 2024, 24(8): 64-71. (in Chinese)
    [6]
    马丽. 无人机智能巡检技术在光伏发电并网巡检中的应用[J]. 电气技术与经济, 2024, (8): 144-146.

    MA L. Application of UAV intelligent inspection technology in grid-connected photovoltaic power generation inspection[J]. Electrical Technology & Economy, 2024, (8): 144-146. (in Chinese)
    [7]
    田爱军, 蔡旭阳, 陈玮, 等. 无人机端路面车辆违停检测及取证系统[J]. 测控技术, 2021, 40(5): 67-74.

    TIAN A J, CAI X Y, CHEN W, et al. UAV end road vehicle parking detection and evidence collection System[J]. Measurement and Control Technology, 2021, 40(5): 67-74. (in Chinese)
    [8]
    吴志高, 陈明. 基于改进YOLOV7的微藻轻量级检测方法[J]. 大连海洋大学学报, 2023, 38(1): 129-139.

    WU Z G, CHEN M. Lightweight detection method of microalgae based on improved YOLOV7[J]. Journal of Dalian Ocean University, 2023, 38(1): 129-139. (in Chinese)
    [9]
    原晓佩, 陈小锋, 廉明. 基于Haar-like和LBP的多特征融合目标检测算法[J]. 计算机科学, 2021, 48(11): 219-225.

    YUAN X P, CHEN X F, LIAN M. Multi-feature fusion target detection algorithm based on Haar-like and LBP[J]. Journal of Computer Science, 2021, 48(11): 219-225. (in Chinese)
    [10]
    耿庆田, 于繁华, 王宇婷, 等. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版)2018, 48(3): 929-935.

    GENG Q T, YU F H, WANG Y T, et al. A new vehicle detection algorithm based on feature fusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48 (3): 929-935. (in Chinese)
    [11]
    王燕, 张继凯, 尹乾. 基于Faster R-CNN的车牌识别算法[J]. 北京师范大学学报(自然科学版), 2020, 56(5): 647-653.

    WANG Y, ZHANG J K, YIN Q. License plate recognition algorithm based on faster R-CNN[J]. Journal of Beijing Normal University(Natural Science Edition), 2020, 56(5): 647-653. (in Chinese)
    [12]
    ZOU Y J, ZHANG Y J, YAN J, et al. A robust license plate recognition model based on bi-lstm[J]. IEEE Access, 2020, 8: 211630-211641.
    [13]
    饶文军, 谷玉海, 朱腾腾, 等. 基于深度学习的车牌智能识别方法[J]. 重庆理工大学学报(自然科学), 2021, 35(3): 119-127.

    RAO W J, GU Y H, ZHU T T, et al. Intelligent license plate recognition method based on deep learning[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(3): 119-127. (in Chinese)
    [14]
    XU X Y, PAN J, ZHANG Y J, et al. Motion blur kernel estimation via deep learning[J]. IEEE Transactions on Image Processing, 2017, 27(1): 194-205.
    [15]
    SUN J, CAO W F, XU Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE, 2015.
    [16]
    王司雨, 李良荣, 顾平, 等. 1种混合的单图像去运动模糊方法[J]. 电子技术应用, 2019, 45(9): 81-84.

    WANG S Y, LI L R, GU P, et al. A hybrid single image demotion-blurring method[J]. Application of Electronic Technology, 2019, 45(9): 81-84. (in Chinese)
    [17]
    KUPYN O, BUDZAN V, MYKHAILYCHM, et al. Deblurgan: blind motion deblurring using conditional adversarial networks[C]. The IEEE Conferenceon Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018.
    [18]
    钱炜, 潘琦. 基于生成对抗网络的喷雾液滴运动模糊恢复[J]. 国外电子测量技术, 2022, 41(11): 15-21.

    QIAN W, PAN Q. Spray droplet motion fuzzy recovery based on generative adduction network[J]. Foreign Electronic Measurement Technology, 2022, 41(11): 15-21. (in Chinese)
    [19]
    董良振, 田建艳, 杨胜强, 等. 基于光照校正和图像融合的零件表面图像增强[J]. 计算机工程, 2024, 50(6): 245-254.

    DONG L Z, TIAN J Y, YANG S Q, et al. Part surface image enhancement based on illumination correction and image fusion[J]. Computer Engineering, 2024, 50(6): 245-254. (in Chinese)
    [20]
    ALI U, LEE I H, MAHMOOD M T. Guided image filtering in shape-from-focus: a comparative analysis[J]. Pattern Recognition, 2021, 111: 107670.
    [21]
    张红英, 朱恩弘, 吴亚东. 1种基于细节层分离的单曝光HDR图像生成算法[J]. 自动化学报, 2019, 45(11): 2159-2170.

    ZHANG H Y, ZHU E H, WU Y D. A single exposure HDR image generation algorithm based on detail layer separation[J]. Acta Automatica Sinica, 2019, 45(11): 2159-2170. (in Chinese)
    [22]
    ZHU P, CHEN B, LIU B, et al. Object detection for hazardous material vehicles based on improved YOLOv5 algorithm[J]. Electronics, 2023, 12(5): 1257-1273.
    [23]
    戴愿, 刘伟铭, 王珩, 等. 基于改进YOLOv5s模型的地铁屏蔽门与列车门间异物快速检测方法[J]. 交通信息与安全, 2023, 41(2): 18-27. doi: 10.3963/j.jssn.1674-4861.2023.02.002

    DAI Y, LIU W M, WANG H, et al. Rapid detection method of foreign bodies between subway screen doors and train doors based on improved YOLOv5s model[J]. Journal of Transport Information and Safety, 2023, 41(2): 18-27. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.002
    [24]
    WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea(South): IEEE, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(7)

    Article Metrics

    Article views (97) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return